پیش بینی بارش ماهانه با مدل درختی M5 و مقایسه آن با روشهای کلاسیک آماری )مطالعه موردی : ایستگاه سینوپتیک ارومیه(

نوع مقاله: یادداشت فنی (5 صفحه)

نویسنده

مدرس /دانشگاه آزاد تبریز

چکیده

در این تحقیق جهت تخمین داده‌های بارش ماهانه ایستگاه ارومیه که از سال 2006 تا 2007 مفقود فرض شده است از روش‌های آماری کلاسیک و مدل درختی M5 با استفاده از نرم‌افزارWeka و به کارگیری ایستگاه‌های مهاباد، خوی، سلماس، تکاب و ماکو استفاده شده است. در بین ایستگاه‌های مورد مطالعه، ایستگاه مهاباد با (r=0.90) بیشترین همبستگی را با ایستگاه ارومیه داشت. 26 سناریو از آمار ده ساله ایستگاه‌های مجاور در تخمین بارش ماهانه ایستگاه شاهد (ارومیه) به نرم‌افزار Weka معرفی شده است که از بین سناریوها، سناریویی که شامل سه ایستگاه مهاباد، ماکو و تکاب با MAE=7.19, r=0.9, RMSE=9.64 به دلیل کم بودن پارامترهای ورودی به مدل به عنوان ساده-ترین و دقیق‌ترین سناریو به مدل تعریف گردید. از بین روشهای کلاسیک ، روش بهترین تخمین‌گر منفرد (SIB) بهترین روش با بیشترین ضریب همبستگی و کمترین خطا r=0.90,RMSE=10.51,MAE=7.07انتخاب شده است. مدل درختی M5 در برآورد داده‌ها با r=0.91,RMSE=9.94,MAE=7.29 بهترین عملکرد را داشته است و به دلیل ارائه روابط خطی ساده و قابل فهم به عنوان روشی جایگزین و کاربردی در محاسبه داده‌های بارش ماهانه مورد توجه قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Forecasting Of Monthly Precipitation Using M5 Model Tree And Classic Statistical Methods (Case Study: Synoptic Oroumieh Station)

نویسنده [English]

  • Sh. Vakili
Lecturer, Tabriz Azad University, Tabriz, Iran.
چکیده [English]

This study carried out to estimate monthly rainfall data of Oroumieh that are assumed to be lost from 2006 to 2007 , by classic statistical methods and M5 model tree using the software Weka using Mahabad, Khoy, Salmas, Makoo and Tekab stations . Among the studied stations, Mahabad station (R = 0.90) had the highest correlation with Oroumieh station. 26 scenarios of nearby stations have been introduced to Weka software in estimating monthly precipitation of Oroumieh station that among scenarios, the scenario which was defined as the simplest and most accurate scenario, included three Mahabad, Makoo and Tekab stations with values of (MAE = 7.19, R = 0.90, RMSE = 9.64) because of the lower input parameters to the model. Among the classical methods, the single best estimator (SIB) method has been selected as the best method with the highest correlation coefficient and the lowest error (R = 0.90 , RMSE = 10.51 ,MAE = 7.07). M5 model tree had the best performance in estimating quantities of data (R = 0.91 ,RMSE = 9.94 , MAE = 7.29) and is considered as an alternative and applied method in the calculation of monthly precipitation data due to simple linear and understandable relationships .

کلیدواژه‌ها [English]

  • classic statistical methods
  • M5 model tree
  • Weka software
  • Correlation coefficient
Berry M, Linoff G (1997) Data mining techniques:for marketing, sales, and customer support. New York John Wiley and Sons

Solomatine DP and Xue Y (2004) Pr M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai river in China. Journal of Hydrologic Engineering, 9(6), Doi.org/10. 1061/(ASCE)1084-0699(2004)9:6(491)

Ditthakit P, Chinnarasri C (2012) Estimation of pan coefficient using M5 model tree. American Journal of Environmental Sciences 8(2):95-103

Emamifar S, Rahimikhoob A, Noroozi A A (2013) Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree. International Journal of Climatology Int. J. Climatol. 33:3174–3181

Etemad-shahidi A, Mahjoobi J (2009) Comparis on between M5  model tree and neural networks for prediction of significant wave height in lake Superior. Ocean Engineering 36:1175–1181

Quinlan JR (1992) Learning with continuous classes. Proceedings of Australian Joint Conference on Artificial Intelligence. World Scientific Press: Singapore, 343–348

Rahimikhoob A, Asadi M, Mashal M (2013) A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid  region. Water Resour Manage 27:4815–4826

Sattari M , Nahrein F, Azimi V (2013) Forecasting of daily evapotranspiration using artificial neural network model and the  model tree M5 case study: Bonab station. Iranian Journal of lrrigation and Drainage 1(7):104-113 (In Persian)