ساخت آمار مصنوعی پارامترهای کیفی بدون روند آب در مخازن (چاه‌نیمه‌ شماره1 سیستان)

نوع مقاله: یادداشت فنی (5 صفحه)

نویسندگان

1 استادیار /گروه مهندسی عمران.دانشکده مهندسی شهیدنیکبخت.دانشگاه سیستان و بلوچستان

2 دانش آموخته کارشناسی ارشد/ دانشکده مهندسی شهید نیکبخت.دانشگاه سیستان و بلوچستان

3 استادیار /گروه مهندسی عمران. دانشکده مهندسی شهیدنیکبخت. دانشگاه سیستان و بلوچستان

چکیده

شناسایی و پایش کیفیت منابع آب به منظور شناخت از کیفیت آب متناسب با مصارف مختلف به عنوان یکی از گام‌های اصلی مدیریت کیفیت منابع آب از جایگاه ویژه‌ای برخوردار است. برای استان سیستان و بلوچستان با توجه به قرار‌گرفتن در منطقه گرم و خشک و کمبود منابع آبی قابل استفاده این اصل مهمتر نیز جلوه می‌کند. هدف از این پژوهش پیش‌بینی پارامترهای کیفی بدون روند آب در چاه‌نیمه‌های سیستان به وسیله شبکه عصبی RBF و مقایسه آن با زنجیره مارکف است. برای این منظور از داده‌های برداشت‌شده اکسیژن محلول،‌ دما، فیتوپلانکتون، زئوپلانکتون، آمونیاک و فسفر استفاده شده و روندیابی این پارامترها به دو روش نامبرده انجام گرفته‌است. میزان خطای میانگین شبکه عصبی برای پارامترهای مذکور به ترتیب 543/5، 714/7، 825/12، 625/5، 396/52 و 141/4 درصد و میزان خطای زنجیره مارکف به ترتیب 169/11، 948/8، 315/5، 934/12، 88/33 و 401/8 درصد بدست آمد. در مجموع برای پارامترهای کیفی بررسی‌شده در این پژوهش، شبکه عصبی نتایج بهتری نسبت به زنجیره مارکف ارائه داده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Construction of Artificial Water Quality Parameters with No Trend in Reservoirs (Chahnimeh No.1 in Sistan)

نویسندگان [English]

  • B Pirzadeh 1
  • M Afsari 2
  • S.A Hashemi Monfared 3
  • A.A Ghaderi 3
1 assistant Prof., University of Sistan and Baluchestan, Zahedan, Iran
2 Master graduated, University of Sistan and Baluchestan, Zahedan, Iran
3 assistant Prof., University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Identification and monitoring the water resources which has a special position is one of the principal steps in quality management of water resources. In Sistan and Baluchestan province, this principle seems to be more important, because this state located in a hot and dry area and has deficiency in usable water resources. The aim of this study is predicting the quality of without trend parameters in Chahnime No.1 of Sistan using neural network and comparing it with Markov chain method. In the present study some parameters such as DO, temperature, Phytoplankton, Zooplankton, Ammonia and Phosphorus have been considered. The mean error percentages of neural network method for these parameters were 5.543, 7.714, 12.825, 5.625, 52.396 and 4.141 respectively, while mean error percentages of Markov chain scheme were 11.169, 8.948, 5.315, 12.934, 33.88, and 8.401, respectively. Obtained results showed that neural network method provided better results in comparing with Markov chain.

کلیدواژه‌ها [English]

  • Quality Parameters of Water
  • Sistan’s Chahnimes
  • RBF Neural Network
  • Markov chain

Alihamzeh M and Mohammad Rezapour Tabari M (2014) Qualitative behavior identification of surface reservoir in case of sudden injection of contaminant load. Iran-Water Resources Research 10(1):39-50

Ansarifard M, Boustani F (2013) Prediction of water quality parameters in rivers by using artificial neural network. International conference on environmental planning & management (In Persian)

Bakhtiari B, Shahraki N, Ahmadi MM (2014) Estimation probability of daily precipitation by using Markov chain models in different climates of Iran. Iran-Water Resources Research 10(2):44-55 (In Persian)

Hashemi Monfared SA, Mirbagheri SA, Sadrnejad SAA (2014) Three-dimensional, integrated seasonal separate advection–diffusion model (ISSADM) to predict water quality patterns in the Chahnimeh reservoir. Environmental Modeling & Assessment 19(1):71-83

Khosravi M (2010) Temporal and spatial analysis of the stability of the Hamoon lakes. Iran-Water Resources Research 6(3):68-79 (In Persian)

Publication No. 330 (2008) Executive instruction for water quality monitoring in dams reservoirs. Ministry of energy

Afsari M (2015) Construction of artificial water quality parameters with no trend in reservoirs by means of Markov chain and comparison with artificial neural network. MsC thesis, University of Sistan and Baluchestan

Rajaee T, Rahimi Benmaran R, Jafari H (2015) Prediction of quality parameters (NO3, DO) of Karaj river using ANN, MLR, and denoising-based combined wavelet-neural network based on models. Iran. J. Health & Environment 7(4):511-530 (In Persian)

Rezaee Harooni A (2014) Construction of artificial parameters no data basins by means of Markov chain and comparison with artificial intelligence, MSC thesis, University of Sistan and Baluchestan, Zahedan, Iran (In Persian)

Tafarojnoruz A, Rezaeir Banis N, Izadjoo F, Asghari Pari A, Shafaei Bajestan M (2007) Water quality modelling of Kondok reservoir using Hec-5Q. 7th International River Engineering Conference, Shahid Chamran University, Ahwaz, Iran (In Persian)

Shakiba H (2010) Investigation and forecasting monthly and annual temperature using ANN (case study: Karaj). MSC thesis, University of Sistan and Baluchestan, Zahedan, Iran (In Persian)