تخمین تابش خورشیدی با استفاده از پارامترهای هواشناسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار/ دانشکده کشاورزی و منابع طبیعی. دانشگاه گنبد کاووس.گنبد کاووس. ایران

2 استادیار /دانشکده کشاورزی و منابع طبیعی. دانشگاه گنبد کاووس.گنبد کاووس.ایران.

3 استادیار /دانشکده کشاورزی و منابع طبیعی. دانشگاه گنبد کاووس. گنبد کاووس

4 استادیار /دانشکده کشاورزی و منابع طبیعی. دانشگاه گنبد کاووس.گنبد کاووس

چکیده

در این تحقیق اطلاعات هواشناسی شامل: دمای بیشینه و کمینه، سرعت باد، ساعت آفتابی، ابرناکی، بارندگی، فشار هوا و رطوبت در شش ایستگاه هواشناسی همدیدی مشهد، اصفهان، رامسر، زاهدان، ارومیه و شیراز جمع‌آوری گردید. با استفاده از آزمون گاما پارامترهای هواشناسی موثر بر تابش خورشیدی در هر ایستگاه تعیین شد. نتایج نشان داد در تمام ایستگاه‌ها دمای بیشینه و ساعت آفتابی، در پنج ایستگاه ابرناکی و در چهار ایستگاه فشار هوا و سرعت باد جزء پارامترهای تأثیرگذار بر تابش خورشیدی است. پس از تعیین پارامترهای هواشناسی موثر در هر ایستگاه، تابش خورشیدی با استفاده از ماشین بردار پشتیبان (SVM) و سه روش تجربی آنگسترم، هارگریوز و عبدالله پیش‌بینی گردید. در ایستگاه‌های مورد بررسی دقت روش‌های آنگستروم و عبدالله روند خاصی ندارد، در بعضی از ایستگاه‌ها روش آنگستروم و در برخی دیگر روش عبدالله تابش را با دقت بیشتری پیش‌بینی کردند. روش هارگریوز تابش خورشیدی را نسبت به دو روش تجربی دیگر با دقت کمتری پیش‌بینی کرده است. SVM توانسته تابش خورشیدی را در مرحله آزمون در ایستگاه‌های اصفهان، مشهد، ارومیه، رامسر، شیراز و زاهدان به ترتیب با ریشه میانگین مربع خطای (RMSE) 38/1، 28/1، 36/1، 51/1، 21/1 و 58/1 MJm-2d-1 و خطای MEF 59/3، 50/5، 18/4، 96/7، 26/3 و 17/5 درصد پیش‌بینی کند. SVM توانسته در تمام ایستگاه‌ها با استفاده از هوش مصنوعی تابش خورشیدی را با دقت بالاتری نسبت به روش‌های تجربی پیش‌بینی نماید. تابش خورشیدی در ایستگاه اصفهان با کمترین مقدار خطا و در ایستگاه رامسر با بیشترین مقدار خطا پیش‌بینی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Solar radiation prediction using metrological parameters

نویسندگان [English]

  • S.M Seyedian 1
  • M. Farasati 2
  • H. Rouhani 3
  • A. Heshmatpour 4
1 Assistant professor, Agriculture and natural resource department, Gonbad Kavous university, Gonbad Kavous, Iran
2 Assistant professor, Agriculture and natural resource department, Gonbad Kavous university, Gonbad Kavous, Iran
3 Assistant professor, Agriculture and natural resource department, Gonbad Kavous university, Gonbad Kavous
4 Assistant professor, Agriculture and natural resource department, Gonbad Kavous university, Gonbad Kavous, Iran
چکیده [English]

In this study, meteorological data, including maximum and minimum temperatures, wind speed, sunshine hours, degree of cloudiness, precipitation, pressure and humidity were collected in the sixth station of Mashhad, Isfahan, Ramsar, Zahedan, Urmia and Shiraz. The results showed that in all stations the maximum temperature and sunshine hours, in 5 stations degree of cloudiness and in 4 station pressure and wind speed component parameters affecting solar radiation. The most important influencing parameters are different at each station so that wind speed in 4 stations and sunshine hours in three stations are ranked first and second. Checking all parameters show that maximum temperature and the degree of cloudiness effective on solar radiation but is the least important parameters. After determining the effective meteorological parameters at each station, solar radiation was estimated using support vector machine (SVM) and three experimental methods Angstrom, Hargreaves and Abdullah. Hargreaves method estimate solar radiation less accurate than the two other experimental method. SVM estimate solar radiation in the test phase at Isfahan, Mashhad, Urmia, Ramsar, Shiraz and Zahedan stations by RMSE error 1.38, 1.28, 1.36, 1.51, 1.21 and 1.58 MJm-2d-1 and MEF error 3.59, 5.50, 4.18, 7.96, 3.26 and 5.17 percent. SVM estimate solar radiation with greater accuracy than empirical methods in all stations using artificial intelligence.

کلیدواژه‌ها [English]

  • Solar Radiation
  • metrological parameters
  • Gamma Test
  • SVM
Abdallah YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Solar Energy 16:111–120

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. United Nations Food and Agriculture Organization, Rome

Almorox J, Hontoria C (2004) Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management 45(9-10):1529-1535

Angstrom A (1924) Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric. Radiation QJR Meteorological Society 50:121-126

Azeez MAA (2011) Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria. Artificial Applied Science Research 3(2):586–95

Ball RA, Purcell LC, Carey SK (2004) Evaluation of solar radiation prediction models in North America. Agronomy Journal 96:391–397

Bristow K, Campbell G (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology 31:159–166

Chen JL, Li GS, Wu SJ (2013) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Conversion and Management 75:311–318

Chen JL, Liu HB, Wu W, Xie DT (2011) Estimation of monthly solar radiation from measured temperatures using support vector machines- A case study. Renewable Energy 36:413-420

Citakoglu H (2015) Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Computers and Electronics in Agriculture 118:28–37

Durrant PJ (2001) winGamma: A non-linear data analysis and modelling tool with applications to flood prediction. Ph.D. thesis, Department of Computer Science, Cardiff University, Wales, UK.

Ekici BB (2014) A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems. Measurement 50:255–262

Erfanian M, Babayi Hesar S (2013) Evaluation of hybrid models to estimate daily solar radiation on the number of stations measuring radiation Iran. Journal of Water and Soil (Agricultural Sciences and Technology) 158(1):16-27 (In Persian)

Ghabayi Soogh M, Mosaedi A, Dehghani AA (2012) Intelligent Modeling solar radiation using gamma and compared to empirical equations calibrated in Kermanshah. Journal of Water and Soil Conservation 18(4):185-208 (In Persian)

Hargreaves GL, Hargreaves GH, Riley JP (1985) Irrigation water requirements for Senegal river basin. Journal of Irrigation Drainage Engineering 111: 265–275

Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering ASCE 108(3):223–230

Jones A (2004) New tools in non-linear modelling and prediction. Computational Management Science 1:109-149

Koncar N (1997) Optimisation methodologies for direct inverse neurocontrol. Ph.D. Thesis, Department of Computing Imperial College of Science, Technology and Medicine, University of London

Korachagaon I, Bapat VN (2012) General formula for the estimation of global solar radiation on earth’s surface around the globe. Renewable Energy 41:394-400

Lazzus JA, Ponce AAP, Marin J (2011) Estimation of global solar radiation over the city of La Serena (Chile) using a neural network. Applied Solar Energy 47(1):66–73

Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal 51(4):599–612

Liu X, Mei X, Li Y, Wang Q, Jensen JR, Zhang Y, Porter JR (2009) Evaluation of temperature-based global solar radiation models in China. Agricultural and Forest Meteorology 149:1433–46

Long H, Zhang Z, Su Y (2014) Analysis of daily solar power prediction with data-driven approaches. Applied Energy 126:29–37

Majnooni Heris A, Zand Parsa Sh, Sepaskhah A, Nazemosadat MJ (2008) Development and evaluation of global solar radiation models based on sunshine hours and meteorological information. Science and Technology of Agriculture and Natural Resources 12(46):491-499 (In Persian)

Moeini S, Javadi Sh, Kokabi M, Dehghan Menshadi M (2010) Iran's estimate of solar radiation using an optimal model. Iran Energy Journal 13(2):1-10 (In Persian)

Moghaddamnia A, Remesan R, Kashani MH, Mohammadi M, Han D, Piri J (2009) Comparison of LLR, MLP, Elman, NNARX and ANFIS models-with a case study in solar radiation estimation. Journal of Atmospheric and Solar-Terrestrial Physics 71:975–982

Ogelman H, Ecevit A, Tasdemiroglu E (1984) A new method for estimating solar radiation from bright sunshine data. Solar Energy 33:619–25

Ouali K, Alkama R (2014) A new model of global solar radiation based on meteorological data in Bejaia city (Algeria). Energy Procedia 50:670-676

Piri J, Ansari H, Faridhosseini A (2013) Modeling of solar radiation by using experimental models and ANFIS (Case Study: Zahedan and Bojnoord stations). Iran Energy Journal 16(3):37-58 (In Persian)

Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia 64: 114–125

Rehman S, Mohandes M (2009) Estimation of diffuse fraction of global solar radiation using artificial neural networks. Energy Sources, Part A 31:974–84

Remesan R, Shamim MA, Han D (2008) Model data selection using gamma test for daily solar radiation estimation. Hydrological Processes 22:4301–4309

Sabzoparvar AA, Bayat Varkeshi M (2010) Evaluate the accuracy of artificial neural network and neuro-fuzzy methods in simulated solar radiation. Iranian Journal of Physics Research 10(4): 347-357 (In Persian)

Safaii B, Khalaji Asadi M, Taghizadeh H, Jilavi A, Taleghani G, Danesh M (2005) Estimation solar energy potential in Iran and related radiation atlas. Journal of Nuclear Science and Technology 33:27-34

Trabea AA, Shaltout MAM (2000) Correlation of global solar radiation with meteorological parameters over Egypt. Renewable Energy 21:297–308

Vapnik V (1995) The nature of statistical learning theory. New York: Springer, 314p

Wanxiang Y, Zhengrong L, Yuyan W, Fujian J, Lingzhou H (2014) Evaluation of global solar radiation models for Shanghai, China. Energy Conversion and Management 84:597–612

Wu W, Liu HB (2012) Assessment of monthly solar radiation estimates using support vector machines and air temperatures. International Journal of Climatology 32:274–85

Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO 56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agricultural water management 95:77-84

Zeng J, Qiao W (2013) Short-term solar power prediction using a support vector machine. Renewable Energy 52:118-127