ترکیب مدل برنامه ریزی آرمانی و سیستم استنتاج عصبی-فازی تطبیقی در بهره برداری بهینه چند هدفه از یک سیستم دو مخزنی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار /دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران.

2 کارشناس ارشد /دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران.

3 کارشناس ارشد/دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران.

چکیده

بـهینه سـازی بهره برداری از مخازن یکی از مهمترین مسائل مطرح در زمینه مدیریت منابع آب می‌باشد. در واقع نیاز مـبرم به اسـتفاده صـحیح از منـابع آب و انرژی، لزوم انجام برنامه‌ریزی جامع و بهره‌برداری صحیح از سدها را بیش از پیش روشن می‌سازد. در حال حاضر تحقـیقات گسترده‌ای در مورد تعمیم روش‌های بهینه‌سازی تک هدفه به چند هدفه برای سیستم‌های چند مخزنی با پیچیدگی‌های بیـشتر در حال مطالعه و بررسی می‌باشد. در این مقاله، مسأله بهینه‌سازی بهره برداری از سیستم مخازن با سه هدف مختلف تأمین نیازهای آبی پایین دست، کنترل سیلاب و استفاده‌های تفریحی از مخازن برای سیستم دو مخزنه در حوضه آبریز سفیدرود (واقـع در شمال ایران)، براساس برنامه‌ریزی آرمانی مدل‌سازی شده است. با مقایسه نتایج مدل‌های تحقیق، مدلی که دارای شاخص عملکرد مخزن مناسب تری بود به عنوان مدل برتر انتخاب گردید. در نهایت جهت منظور کردن عدم قطعیت و همچنین برای به دست آوردن روش کلی بهره‌برداری از سیستم مخازن و به دلیل این که قواعد زبانی مزیت قابل توجهی در فهم بهتر و تفسیر آسان‌تر سیستم دارد، سیستم استنتاج عصبی فازی تطبیقی ساخته شد. نتایج تحـقیق، حاکی از موفقیت مدل به کار گرفته شده در مدیریت صحیح سیـستم دو مخزنه مورد نظر می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

A hybrid Goal Programming method and Adaptive Neural-Fuzzy Inference System for Optimal Operation of a Multi-Objective Two-Reservoir System

نویسندگان [English]

  • V Nourani 1
  • N Abolvaset 2
  • K Salehi 3
1 Associate Professor, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran
2 Master of Science Graduated, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran
3 Master of Science Graduated, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran
چکیده [English]

Optimization of reservoirs operation is one of the most important tasks in the field of water resources management. In fact, vital requirement for beneficial use of water and energy resources clear the necessity of doing integrated planning and right operation of dams. recently, research has been made focusing on a shift from traditional single objective models to multi–objective models for the planning of multiple reservoir systems in a river basin. In this study the  three objectives of meeting irrigation and environmental demand, flood control and recreation (sometimes in conflict with each other) are  referred to for a two reservoir system by Goal Programming.
Within this framework, the mathematical model of two reservoirs system in Sefidrud watershed (Northern Iran) with the three objectives is formulated and the system parameters and decision variables are defined. The problem involves finding desired water releases from each reservoir in the system in order to satisfy the multiple objectives.
With comparing results of optimization models of this study, the model with the higher reliability indices was chosen as the best model. Due to the considerable advantages of linguistic rules in better inferring and interpreting the systems, an adaptive neural based fuzzy inference system (ANFIS) approach is used to consider uncertainties and to achieve a general method for multipurpose multi reservoir systems. The results of the Adaptive Neural Fuzzy Inference System (ANFIS) models shows that they can be applied successfully to provide high accuracy for the management of the reservoir systems.

کلیدواژه‌ها [English]

  • reservoirs
  • Operation
  • Multi objective Optimization
  • Simulation
  • Adaptive Neural Fuzzy Inference System

اصغرپور، م. ج. (1377)، "مسائل تصمیم‌گیری چند معیاره"، انتشارات دانشگاه تهران.

مهندسین مشاور مهاب قدس، (1382)، "گزارش مطالعات بهنگام نمودن آبدهی طرح سد و نیروگاه شهریار".

نورانی، و.، صالحی، ک.، ابوالواسط، ن. و صالحی، م. (1388). "مدل‌سازی بارش-رواناب با استفاده از روش شبکه عصبی فازی تطبیقی موجکی و مقایسه آن با روش‌های شبکه عصبی موجکی و شبکه عصبی فازی تطبیقی"، هشتمین کنگره بین‌المللی مهندسی عمران، اردیبهشت88، دانشگاه شیراز، شیراز.

Abdelaziz Foued, B., Sameh, M. (2001), “Application of goal programming in a multi-objective reservoir operation model in Tunisia”, European Journal of Operational Research, Vol. 133, pp. 352-361.

Aouni, B., Abdelaziz Foued, B., and Martel, J.M. (2005), “Decision-Maker preferences modeling in the stochastic goal programming”, European Journal of Operational Research, Vol. 162, pp. 610-618.

Eschenbach, E., Magee, T., Zagona, E., Goronflo, M., and Shane R. (2001), “Goal programming decision support system for multi objective operation of reservoir system”, Journal of Water Resources Planning and Management, ASCE, Vol. 127, No. 2, pp. 108-120.

Dixon, B. (2005), “Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based sensitivity analysis”, Journal of Hydrology, Vol. 309, pp. 17-38.

Jang, J.S.R. (1993), “ANFIS: Adaptive-network-based fuzzy inference systems”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. (3), pp. 665-685.

Jang, J.S.R., Sun, C.T., and Mizutani, E. (1997). “Neuro fuzzy and soft computing: A computational approach to learning and machine intelligence”, Printice-Hall International, New Jersey.

Kişi, O. (2005), “Suspended sediment estimation using neuro-fuzzy and neural network approaches”, Journal of Hydrological Sciences, Vol. 50, No. 4, pp. 683-69

Labadie, J.W. (2004), “Optimal operation of multireservoir system: State-of-the-art review, “Journal of Water Resources Planning and Management, ASCE, Vol. 130, No. 2, pp. 93-111.

Loganathan, G., Bhattacharya, D. (1990). “Goal programming techniques for optimal reservoir operations”, Journal of Water Resources Planning and Management, ASCE, Vol. 116, No. 6, pp. 820-838.

Loucks, D.P. (1997), “Quantifying trends in system sustainability”, Journal of Hydrological Sciences, Vol. 42, No. 4, pp. 513-530.

Loucks, D.P., Van Beek, E. (2005), “Water resources systems planning and management: An introduction to methods, models and applications, studies and reports in hydrology”, UNESCO Publishing, Paris, France.

Mehta, R., K.Jain, S. (2009), “Optimal operation of a multi-purpose reservoir using Neuro-Fuzzy technique”, Water Resources Management, Vol. 23, pp. 509-529.

Mousavi, S.J., Ponnambalam, K., and Karray, F. (2007), “Inferring operating rules for reservoir operations using fuzzy regression and ANFIS”, Fuzzy Sets and Systems, Vol. 158, pp. 1064-1082.

Rajaee, T., Mirbagheri, S.A., Kermani, M., and Nourani, V. (2009), “Daily suspended sediment concentration simulation using ANN and Neuro-Fuzzy models”, Science of the Total Environment, Vol. 407, pp. 4916–4927.

Russell, S.O., Campbell, P.F. (1996), “Reservoir operating rules with fuzzy programming”, Journal of Water Resources Planning and Management, ASCE, Vol. 122, No. 3, pp. 165-170.