نویززدایی و پیش‌بینی سری زمانی بر پایه الگوریتم موجک و نظریه آشوب (مطالعه موردی: شاخص پایش خشکسالی SPI شهر تبریز)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد / دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 کارشناس ارشد / سازه‌های دریایی، دانشکده عمران، دانشگاه تبریز، تبریز، ایران

3 دانشجوی دکتری/ مهندسی آب، دانشکده عمران، دانشگاه تبریز، تبریز، ایران

4 دانشجوی کارشناس ارشد / مهندسی برق، دانشکده برق و کامپیوتر، دانشگاه تهران، تهران، ایران

چکیده

عملکرد پدیده‌های طبیعی در نگاه اول معمولا تصادفی به‌نظر می‌رسد، لیکن با تغییر مقیاس و حذف نویز می‌توانند به نوعی نظم دست یابند و امکان پیش‌بینی آن‌ها در آینده فراهم گردد. این ایده پایه اصلی نظریه آشوب (1chaos) می‌باشد که به مطالعه رفتار ناپایدار و غیر پریودیک در سیستم‌های دینامیکی غیرخطی نوسانی می‌پردازد. خشکسالی از مهم‌ترین بلایای طبیعی است و طراحی سیستم‌های پایش آن به منظور مدیریت بهتر منابع آب از اهمیت بسزایی برخوردار می‌باشد. از میان شاخص‌های پالایش، شاخص بارندگی استاندارد (2SPI) در حال حاضر در دنیا به طور گسترده مورد استفاده قرار می‌گیرد. از آن‌جا که سری زمانی این شاخص ماهیت دینامیکی دارد، نظریه آشوب می‌تواند نقش بی‌نظیری را در کسب اطلاعات از این تغییرات ایفا کند. اما داده‌های SPI دارای نویز می‌باشند که باعث می‌شود پیش‌بینی داده‌ها خیلی دقیق نباشد. از آنجا که الگوریتم موجک (3wavelet) قادر به بیان سیگنال در محدوده زمان و فرکانس و همچنین تحلیل موضعی سیگنال می‌باشد، در این تحقیق به منظور نویززدایی SPI شهر تبریز در طول 40 سال دوره آماری اخیر، استفاده شده است. سپس ماهیت آشوبناکی سری زمانی حاصل با استفاده از شاخص‌های بعد همبستگی و نمای لیاپانوف مورد بررسی قرار گرفته است. نتایج نشانگر رفتار کاملاً آشوبناک سری زمانی تحت بررسی می‌باشد. بنابراین رفتار سیستم غیرتصادفی است و به عبارتی جزو فرآیند‌های استوکاستیکی و نویز‌دار مطرح نمی‌شود. جهت پیش‌بینی مقادیر SPI توسط نظریه آشوب، از الگوریتم نزدیک‌ترین همسایگی کاذب استفاده گردیده است. نتایج صحت سنجی حاکی از دقت بالای پیش‌بینی نظریه آشوب بوده و بر‌این اساس میزان SPI و شدت خشکسالی شهر تبریز برای 3 سال آینده پیش‌بینی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

De-noising and Prediction of Time Series Based on the Wavelet Algorithm and Chaos Theory (Case Study: SPI Drought Monitoring Index of Tabriz City)

نویسندگان [English]

  • Y Hassanzadeh 1
  • M.A Lotfollahi-Yaghin 1
  • S Shahverdi 2
  • S Farzin 3
  • N Farzin 4
1 Professor, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
2 M.Sc of Marine Structure Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
3 PhD Student, Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
4 M.Sc student, Electronic Engineering, Faculty of Electronic and Computer Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Natural phenomena usually seem irregular at the first glance, however, with changing the scale and the noise they can become regular and therefore it is possible to predict their behaviors. This idea is the main base of the Chaos Theory that deals with studying of unstable and non-periodic behavior of nonlinear and swinging dynamic systems. The time series of drought, as a major natural disaster, has a dynamic nature. and therefore the Chaos Thero can play a significant role in capturing the detailed changes. Refinement of the indicators, standardized precipitation index (SPI) is now widely used in the world. The obtained SPI data are noisy, and therefore the predictions made based on this data are not very accurate. Wavelet algorithm is able to describe a signal in time and frequency domain and also analyze a signal locally. Hence in this study, it is used in order to de-noise time series of SPI of Tabriz city for the past 40 years. The nature of the chaotic time series was evaluated using the Lyapunov exponent and correlation dimension parameters. The results indicated a very chaotic time series behavior for the studied data. The behavior of the system is non-random, and then the time series are not portion of the stochastic and the noise process. To predict the SPI values by the Chaos Theory, the algorithm of the false nearest neighbors is used. Validation of the results indicated the high accuracy of the predictions of the Chaos Theory. According to the proposed method the severity of the droughts and the SPI of the Tabriz city are predicted for the next 3 years.

کلیدواژه‌ها [English]

  • De-noising
  • prediction
  • Chaos Theory
  • Wavelet
  • Tabriz SPI Time Series

جهانبخش اصل، س.، قویدل رحیمی، ی.، (1381). "تحلیل توزیع فضایی دوره‌های مرطوب و خشک ایستگاه‌های حوضه آبریز دریاچه ارومیه". مجله فضای جغرافیایی 5،ص.  17-27.

فرزین، س.، شیخ الاسلامی، س.ر.، حسن زاده، ی.، (1390). "تحلیل آشوب­پذیری سری زمانی با استفاده از ترسیم فضای فاز و روش بعد همبستگی (مطالعه موردی: بارش ماهانه در دریاچه ارومیه)". چهارمین کنفرانس مدیریت منابع آب ایران، دانشگاه صنعتی امیرکبیر، تهران، اردیبهشت.

فرزین، س.، بری، م.، ضرغامی، م.، (1387). "خشکسالی وراههای مقابله با بحران آب کشاورزی در دشت داراب" سومین کنفرانس مدیریت منابع آب ایران- دانشکده مهندسی عمران، دانشگاه تبریز، مهرماه.

سعیدی‌، ح.‌، (1384). "بهبود آشکارسازی اهداف راداری با استفاده از نویززدایی بر پایه موجک". مجله استقلال 1، ص. 17-29.

شاهوردی، س.، (1390). "استفاده از تبدیل موجک بسته ای برای تشخیص آسیب در سازه‌های فراساحلی"، پایان نامه کارشناسی ارشد، مهندسی عمران- گروه آب گرایش سازه‌های دریایی. دانشگاه تبریز.

عسگری، ا.، (1384). "تجزیه و تحلیل سیگنال سیستم لیداری بر مبنای لیزر2 TEA-CO با استفاده از روش دی کانولوشن"، پایان نامه کارشناسی ارشد، فیزیک. دانشگاه شهید باهنر کرمان.

نصری، م.، نظام آبادی‌پور، ح.، سریزدی، س.، (1387). "ارایه یک روش وفقی برای حذف نویز سیگنال در قلمرو موجک". مجله مهندسی برق و مهندسی کامپیوتر ایران.

نوری، م.، (1385). "شبیه سازی فرایند بارندگی-رواناب حوضه آبریز هلیل رود و غازان چای با استفاده شبکه‌های عصبی-موجکی". پایان نامه کارشناسی ارشد، دانشگاه شهید باهنر کرمان

Abarbanel, H.D.I., (1996). Analysis of observed chaotic data. Springer Verlag.

Cao, L., (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 110, pp.43-50.

Coifman, R.R., Donoho, D.L., (1995) Translation-invariant de-noising. Lecture Notes In Statistics-New York-Springer Verlag-, pp.125-125.

Damle, C., Yalcin, A., (2007). Flood prediction using time series data mining. Journal of Hydrology 333, pp.305-316.

Daubechies, I., (1992). Ten lectures on wavelets. Society for Industrial Mathematics.

Donoho, D.L., (1995). De-noising by soft-thresholding. Information Theory, IEEE Transactions on 41, pp. 613-627.

Donoho, D.L., Johnstone, I.M., (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the american statistical association, pp. 1200-1224.

Donoho, D.L., Johnstone, J.M., (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425.

Dupigny-Giroux, L.A., (1999). Drought Follows the Deluge in Vermont. Drought Network News (1994-2001), 41.

Dupigny‐Giroux, L.A., (2001). Towards Characterizing and Planning for Drought in Vermont‐Part I: A Climatological Perspectwe1. Jawra Journal of the American Water Resources Association 37, pp.505-525.

Frazier, C., Kockelman, K.M., (2004). Chaos Theory and Transportation Systems: Instructive Example. Transportation Research Record: Journal of the Transportation Research Board 1897, pp. 9-17.

Gabor, D., (1946). Theory of communication. IEEE Journal 21, pp. 149–157.

Grassberger, P., Procaccia, I., (1983). Characterization of Strange Attractors. Physical Review Letters, 50 (14), pp. 346-349.

Guttman, N.B., (1998). Comparing the Palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association 34, pp. 113-121.

Han, J.G., Ren, W.X., Sun, Z.S., (2005). Wavelet packet based damage identification of beam structures. International Journal of Solids and Structures 4, pp,6610-6627.

Hayes, M., Center, U.o.N.-.-L.N.D.M., (2002). Drought indices. National Drought Mitigation Center, University of Nebraska.

Hayes, M.J., Svoboda, D., Wilhite, D.A., Vanyarkho, O.V., (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80, pp. 429-438.

Khan, S., Ganguly, A., Saigal, S., (2005). Detection and predictive modeling of chaos in finite hydrological time series. Nonlinear Processes in Geophysics 12, pp. 41-53.

Kocak, K., (2000)0. Nonlinear time series prediction of O3 concentration in Istanbul. Atmospheric environment 34, pp.1267-1271.

Kocak, K., Bali, A., Bektasoglu, B., (2007). Prediction of Monthly Flows by using chaotic approach, International congress on river basin management. Maslak: Istanbul Technical University, Antalya, Turkey, pp. 553-559.

Lotfollahi-Yaghin, M.A., Koohdaragh, M., (2011). Examining the function of wavelet packet transform (WPT) and continues wavelet transform (CWT) in recognizing the crack specification. KSCE Journal of Civil Engineering 15, pp.497-506.

Lotfollahi-Yaghin, M.A., Shahverdi, S., Tarinejad, R., (2010). Damage detection in jacket type offshore platforms using wavelet packet transform, The 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference 2010.

Loukas, A., Vasiliades, L., Dalezios, N., Univ. of the Aegean, L.I.D.o.E.S., Lekkas, T., (2003). Intercomparison of meteorological drought indices for drought assessment and monitoring in Greece.

McKee, T.B., Doesken, N.J., Kleist, J., (1993). The relationship of drought frequency and duration to time scales.

Ng, W., Panu, U., Lennox, W., (2007). Chaos based Analytical techniques for daily extreme hydrological observations. Journal of Hydrology 342, pp.17-41.

Shang, P., Na, X., Kamae, S., (2009). Chaotic analysis of time series in the sediment transport phenomenon. Chaos, Solitons & Fractals 41, pp. 368-379.

Solomatine, D., Velickov, S., Wust, J., (2001). Predicting water levels and currents in the North Sea using chaos theory and neural networks, pp. 353-359.

Stehlik J, (2003). Deterministic Chaos In Runoff Series. Czech Hydrometeorological institute, Dept of Experimental Hydrology, 143, 06 prague.

Steinemann, A.C., Hayes, M.J., Cavalcanti, L., (2006). Drought indicators and triggers. Drought and water crises: Science, technology, and management issues, pp.71–82.

The Math Works, I., (2007). MATLAB.

Turner, M.J., Blackledge, J.M., Andrews, P.R., (1998). Fractal geometry in digital imaging. Academic Pr.

Vicente Serrano, S.M., González-Hidalgo, J.C., Luis, M., Raventós, J., (2004). Drought patterns in the Mediterranean area: the Valencia region (eastern Spain).

Wilhite, D.A., (1993). Planning for drought: A methodology. Drought Assessment, Management, and Planning: Theory and Case Studies, pp. 87-108.

Wu, J., Lu, J., Wang, J., (2009). Application of chaos and fractal models to water quality time series prediction. Environmental Modelling & Software 24, pp. 632-636.