طراحی پویای چند معیاره شبکه‌های توزیع آب شهری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی/ دکتری رشته مهندسی منابع آب، گروه مهندسی آبیاری و آبادانی دانشگاه تهران - تهران - ایران.

2 استادیار / بخش مهندسی منابع آب، گروه مهندسی آبیاری و آبادانی دانشگاه تهران- تهران - ایران.

3 استاد/ بخش سازه‌های آبی، گروه مهندسی آبیاری و آبادانی دانشگاه تهران- تهران - ایران.

چکیده

طراحی اولیه شبکه‌های توزیع آب شهری برای دوره طرح مورد نظر و همچنین طراحی فاز ترمیم و نگهداری آن‌ها عموماً‌ به طور کاملاً جداگانه انجام می‌شوند. در حالیکه به نظر می‌رسد تاثیر طراحی اولیه بر شرایط موجود در دوران بهره‌برداری و تصمیمات اتخاذ شده در فاز ترمیم و نگهداری کاملاً غیر قابل انکار است. در این تحقیق با تلفیق دو فاز طراحی اولیه و فاز ترمیم و نگهداری شبکه‌ها، روش جدیدی برای طراحی و ترمیم توام شبکه‌های آبرسانی ارائه شده است. این روش که طراحی پویای شبکه‌های توزیع آب شهری نامیده شده است، قادر به ارائه گزینه‌های کم هزینه‌تر و در عین حال مطمئن‌تر در مقایسه با طراحی و ترمیم جداگانه شبکه‌هاست. برای این منظور ابتدا یک شاخص اطمینان‌پذیری جدید بر مبنای منطق فازی ارائه می‌شود. سپس با توسعه الگوریتم چند هدفه جفت گیری زنبور عسل و به کارگیری آن در طراحی پویای چند معیاره دو شبکه به کار رفته در تحقیقات دیگران، نتایج نهایی به دست می‌آید. این نتایج نشان‌دهنده تاثیر مثبت طراحی پویا بر کاهش هزینه‌ها و همچنین افزایش اطمینان‌پذیری سیستم می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Multi Objective Dynamic Design of Water Distribution Networks

نویسندگان [English]

  • N Ghajarnia 1
  • O Bozorg Haddad 2
  • S Kouchakzadeh 3
1 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, University of Tehran, Tehran, Iran
2 Assistant Professor, Department of Irrigation and Reclamation Engineering, University of Tehran, Tehran, Iran, E-mail:
3 Professor, Department of Irrigation and Reclamation Engineering, University of Tehran, Tehran, Iran
چکیده [English]

In water distribution networks the initial and rehabilitation design are usually perform separately. However, it seems that the influence of the initial design upon the future condition of the network performance during operational years and rehabilitation activities are undeniable. Therefore, by combining the initial and rehabilitation designs, a new method is presented in this paper. This method called Dynamic Design of water distribution networks is capable of introducing cheaper and more reliable long term designs in comparison with normal initial design and rehabilitation design of networks. To assess this method, a fuzzy reliability index is introduced. Then by developing the multi objective version of the honey-bee mating optimization algorithm and applying it on two sample networks, final results of the multi objective dynamic design method is presented. Finally, this paper showed the positive performance and influence of dynamic design method on decreasing the design costs and increasing system reliability. 

کلیدواژه‌ها [English]

  • Dynamic Design
  • Multi objective Optimization
  • Fuzzy Reliability Index
  • MOHBMO algorithm
  • Water Distribution Network

بزرگ حداد، ا. (1384). "بهینه­سازی هیدروسیستم­ها با استفاده از الگوریتم بهینه­یابی جفت­گیری زنبور عسل (HBMO)." رساله دکتری، دانشگاه علم و صنعت.

فلاح مهدی‌پور، ا. (1387). "کاربرد روشهای بهینه‌سازی چندمنظوره فراکاوشی دربهره‌برداری از سیستمهای چندمخزنه." پایان‌نامه کارشناسی‌ارشد، دانشگاه تهران.

قاجارنیا، ن. (1388). "طراحی پویای چند معیاره شبکه­های توزیع آب شهری." پایان‌نامه کارشناسی‌ارشد، دانشگاه تهران.

Afshar, M. H. and Mariño, M. A. (2008). “Application of an ant algorithm for layout optimization of tree networks” Engineering Optimization, 389(3), pp. 353-369.

Agrawal, M. L., Gupta. R. and Bhave. P. R. (2007). “Reliability-Based Strengthening and Expansion of Water Distribution Networks” J. Water Resources Planning and Management (ASCE), 133(6), pp. 531-541.

Alperovits, E. and Shamir, U. (1977). “Design of optimal water distribution systems.” Water Resources Research, 13(6), pp. 885-900.

Bozorg haddad, O., Adams, B. J. and Mariño, M. A. (2008). “Optimum rehabilitation strategy of water distribution systems using the HBMO algorithm” J. Water Supply: Research and Technology. (151), pp. 337-350.

Bozorg Haddad, O., Afshar, A. and Mariño, M. A. (2006). “Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization.” J. Water Resources Management, 20 (5), pp. 661-680.

Cunha, M. C. and Sousa, J. (1999) “Water distribution network design optimization: simulated annealing approach.”J. Water Resources Planning and Management (ASCE), 125(4), pp. 215-221.

Eusuff, M. M. and Lansey, K. E. (2003). “Optimization of water distribution network design using the shuffled frog leaping algorithm.”  J. Water Resources Planning and Management (ASCE), 129(3), pp. 210-225.

Fujiwara, O. and Kang, D. B. (1990). “A two-phase decomposition method for optimal design of looped water distribution networks.” Water Resources Research, 26(4), pp. 539-549.

Geem, Z. W. (2005). “Optimal cost design of water distribution networks using harmony search.”  Engineering Optimization, 38(3), pp. 259-280.

Goulter, I. C. and Bouchart, F. (1990). “Reliability constrained pipe networks model.” J. Hydraulic Engineering (ASCE), 16(2), pp. 221-229.

Goulter, I. and Coals, A. (1986). ‘‘Quantitative approaches to reliability assessment in pipe networks.’’ J. Transportation Engineering, (ASCE), 112(3), pp. 287– 301.

Goulter, I. C., Lussier, B. M. and Morgan, D. R. (1986). “Implications of head loss path choice in the optimization of water distribution networks.” Water Resources Research, 22(5), pp. 819-822.

Halhal, D., Walters, G. A., Ouazar, D. and Savic, D. A. (1997). “Water network rehabilitation with structured messy genetic algorithm.” J. Water Resources Planning and Management (ASCE), 123(3), pp. 137-146.

Kessler, A. and Shamir, U. (1989). “Analysis of the linear programming gradient method for optimal design of water supply networks.” Water Resources Research, 25(7), pp. 1469-1480.

Kettler, A. and Goulter, I. (1983). ‘‘Reliability consideration in the least cost design of looped water distribution networks.’’ Proceeding of 10th International, Symposium on Urban Hydrology, Hydraulic and Sediment Control, University of Kentucky, Lexington, Ky., pp. 305–312.

Kettler, A. J. and Goulter, L. C. (1985). “An analysis of pipe breakage in urban water distribution networks.” Canadian J. Civil Engineering, 12(2), pp. 286-293.

Lippai, I., Heaney, J. P. and Laguna, M. (1999) “Robust water system design with commercial intelligent search optimizers.” J. Computations in Civil Engineering, 13(3), pp. 135-143.

Mays, L. W. (1996). “Review of reliability analysis of water distribution systems.” In Tikle, Goulter, Xu, Wasimi, & Bouchart (Eds.), Stochastic Hydraulics, Rotterdam, Balkema, pp. 53-62.

Murphy, L. J. and Simpson, A. R. (1992). “Genetic algorithm in pipe network optimization.” Re. Rep. NR93, Dep. Of Civ. And Envir. Engrg., Univ. of Adelaide, Australia.

Morgan, D. R. and Goulter, I. C. (1985). ‘‘Optimal urban water distribution design.’’ Water Resources Research, 21(5), pp. 642–652.

Ostfeld, A. and Shamir, U. (1996). ‘‘Design of optimal reliable multiquality water- supply systems.’’ J. Water Resources Planning and Management (ASCE), 122(5), pp. 322–333.

Prasad, T. D. and Park, N. S. (2004). “Multiobjective Genetic Algorithms for Design of Water Distribution Networks.”J. Water Resources Planning and Management (ASCE), 130(1), pp. 73-82.

Quindry, G. E., Brill, E. D. and Liebman, J. C. (1981). “Optimization of looped water distribution systems.” J. Environmental Engineering (ASCE), 107(4), pp. 665-679.

Rossman, L. A. (1993). “EPANET, users manual.” U.S. Environmental Protection Agency, Cincinnati, Ohio.

Rowell, W. F. and Barnes, J. W. (1982). ‘‘Obtaining the layout of water distribution systems.’’ J. Hydraulics Division, (ASCE), 108(1), pp. 137–148.

Savic, D. A. and Walters, G. A. (1997) “Genetic algorithms for least-cost design of water distribution networks.” J. Water Resources Planning and Management (ASCE), 123(2), pp. 67-77.

Shamir, U. and Howard, C. D. (1979). “An Analytic approach to scheduling pipe replacement.” J. American Water Works Association (AWWA)., 71(5), pp. 248-258

Sharp, W. W. and Walski, T. M. (1988). “Predicting internal roughness in water mains.” J. American Water Works Association (AWWA)., (80), pp. 34–40.

Suribabu, C. R. and Neelakantan, T. R. (2006). “Design of water distribution networks using particle swarm optimization” Urban Water, 3(2), pp. 111-120.

Tabesh, M., Tanimboh, T. T. and Burrows, R. (2004). “Pressure dependent stochastic reliability analysis of water distribution networks”J. Water Science Technology: Water Supply, 4(3), pp. 81-90.

Tabesh, M., Soltani, J., Farmani, R. and Savic, D. (2009). “Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling” J. Hydroinformatics, 11(1), pp. 1–17.

Todini, E. (2000). “Looped water distribution networks design using a resilience index based heuristic Approach.” Urban Water, 2(3), pp. 115– 122.

Vasan. A. and Simonovic. S.P. (2010), “Optimization of water distribution network design using differential evolution.” J. Water Resources Planning and Management (ASCE), 136(2), pp. 279-287.

Walski, T. M. (1986). “Making water system rehabilitation decisions.” Proceeding of Water Forum 86, (ASCE), New York, N.Y., pp. 474-476.

Walski, T. M., et al. (1987). “Battle of the network models: Epilogue.” J. Water Resources Planning and Management (ASCE), 113(2), pp. 191-203.

Walski, T. M. (2001). “The wrong paradigm-Why water distribution optimization doesn’t work.” J. Water Resources Planning and Management (ASCE), 127(4), pp. 203-205.

Woodburn, J., Lansey, K. and Mays, L. W. (1987). “Model for the optimal rehabilitation and replacement of water distribution system components.” Proceeding of National Conference of Hydraulics Engineering, (ASCE), New York, N.Y., pp. 606-611.

Young, H. P. (1993). “An evolutionary model of bargaining.” J. Economic Theory, (59), pp. 145-168.

Xu, C. and Goulter, I. (1999). “Reliability-Based Optimal Design of Water Distribution Networks” J. Water Resources Planning and Management (ASCE), 125(6), pp. 352-362.