بهینه سازی سیستم‌های ذخیره سیکلی؛ مبانی و فرمول‌بندی مدل طراحی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار/ دانشکده مهندسی آب و محیط زیست- دانشگاه صنعت آب و برق- تهران- ایران.

2 استاد / دانشکده مهندسی عمران- دانشگاه علم وصنعت ایران- تهران- ایران.

چکیده

سیستمذخیرهسیکلی، سیستمی است ترکیبی، متشکل از دو زیرسیستم آب سطحی و آب زیرزمینی که تأمین نیازهای تعهد شده را با تشکیل یک حلقه تعاملی بینابینی به وجود می‌آورد. جهت مدل سازی این سیستم‌ها لازم است ارتباط هیدرولیکی بین کلیه مؤلفه‌های آن مد نظر قرار گیرد. در این مقاله مبانی و فرمول‌بندی مدل بهینه‌سازی طراحی سیستم ارائه گردیده است. بهینه‌سازی پارامتر گسترده طراحی سیستم ذخیره سیکلی مورد توجه قرار گرفته و از فرم اصلاح شده و تعمیم یافته روش ماتریس پاسخ واحد جهت اتصال مدل شبیه‌سازی آب زیرزمینی، به مدل بهینه‌سازی طراحی سیستم استفاده شده است. در سیستم ذخیره سیکلی حاضر علاوه بر تعامل طبیعی و فیزیکی بین دو زیر‌سیستم آب سطحی و زیرزمینی، رابطه دیگری نیز از طریق یک فرمان بهره‌برداری بهینه بین این دو زیر‌سیستم برقرار می‌باشد. جهت آزمون مدل ارائه شده، از یک سیستم ذخیره سیکلی ساده فرضی استفاده شده است. در ادامه براساس اطلاعات رودخانه و آبخوان دشت ابهر، مطالعه موردی انجام گرفته است. جهت حل مدل از نرم‌افزار LINGO استفاده گردیده است. حل مدل ضمن تعیین سطح بهینه توسعه هر بخش از سیستم، اندرکنش و تعامل بخش‌های مختلف را جهت تعیین نیازهای متفاوت نتیجه می‌دهد. نکته قابل توجه اینکه نتایج بهره‌برداری بهینه در برخی از بخش‌های سیستم با رویکرد بهره‌برداری معمول متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Cyclic Storage Systems Optimization; Design Model Fundamentals and Formulation

نویسندگان [English]

  • S Alimohammadi 1
  • A Afshar 2
1 Assistant Professor, Faculty of Water and Environmental Engineering, Power and Water University of Technology, Tehran, Iran
2 Professor, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

A cyclic storage system integrates a surface water subsystem (i.e., river and surface reservoir) with a groundwater subsystem (i.e., aquifer) in an interactive loop to satisfy prespecified demands. Modeling these systems need to consider the hydraulic relationship between all components. This paper presents an optimization model for design and operation of a cyclic storage system. A generalized and modified unit response matrix method is developed and embedded into the optimization model to develop design and operation parameters. This method were also used to create the link between the groundwater simulation model and the system optimization model to compute system responses to different excitations. Solution to the proposed model, in addition to the design parameters, provides the optimal operation for the defined cyclic storage system. The Abhar River and Aquifer, Iran, were used as case study. One of the key results of this study is that the release from the surfacereservoir does not necessarily follow a storage rule curve as might be expected in a single reservoir system.
 

کلیدواژه‌ها [English]

  • Cyclic storage system
  • Conjunctive use
  • Artificial recharge
  • Distributed parameter optimization
  • Nonlinear Programming

علیمحمدی، س. (1384)، بهینه‌سازی طراحی و بهره‌برداری تلفیقی سیستم‌های منابع آب سطحی و زیرزمینی- رویکرد ذخیره سیکلی، پایان نامه جهت اخذ مدرک دکتری در مهندسی عمران. دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران.

استادرحیمی، ل.، افشار، ع. و اردشیر, ع. (1385)، طراحی و بهره‌برداری بهینه از سیستم ذخیره سیکلی توده‌ای، مجله آب و فاضلاب، شماره 60، صص 41-54.

مهندسین مشاور آبفن، گزارش مطالعات طرح سد کینه ورس و سازه‌های وابسته، تهران، 1379.

مهندسین مشاور آبخوان، گزارش مطالعات طرح بهره‌برداری تلفیقی دشت ابهر، تهران، 1383.

Alimohammadi, S., and A. Afshar (2005a), Optimum Design of Cyclic Storage Systems; Distributed Parameter Approach: 1- System Definition and Model Formulation, Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17.

Alimohammadi, S. and Afshar, A. (2005b), Optimum Design of Cyclic Storage Systems; Distributed Parameter Approach: 2- Model Solution Methodology and Analysis of Results, Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17.

Alimohammadi, S., Afshar, A. and Marino, M. A.  (2009), Cyclic Storage Systems Optimization: Semi-Distributed Parameter Approach, Journal of American Water Works Association.Vol.101, No. 2.

Afshar, A., Ostadrahimi, L., Ardeshir A. and Alimohammadi, S. (2008), Lumped Approach to a Multi-Period–Multi-Reservoir Cyclic Storage System Optimization, Water Resources Management,  22, 1741-1760, Springer Netherlands

Barlow, P.M., Ahlfeld, D. P. and Dickerman, D. C. (2003), Conjunctive - management models for sustained yield of stream-aquifer systems, Journal of Water Resources Planning and Management, ASCE,129,1, pp. 35-48.

Basagaoglu, H., Marino, M.A. and Shumway, R.H. (1999), δ-Form approximating problem for a conjunctive water resource management model, Advances in Water Resources, 23, pp. 69-81.

Bredehoeft, J.D. and Young, R.A. (1972), The temporal allocation of ground water – A simulation approach” Water Resources Research, Vol.6, No.1, pp. 3-21.

Coe, J.J. (1990), Conjunctive use-advantages, constraints, and examples, Journal of Irrigation and Drainage, ASCE, 116, 3, pp. 427-443.

Fredericks, J. W., Labadie, J. W. and Altenhofen, J. M. (1998), Decision support system for conjunctive stream-aquifer management, Journal of Water Resources Planning and Management, ASCE, 124, 2, pp. 69-78.

Lall, U. (1995).”Yield model for screening surface and ground-water development, Journal of Water Resources planning and Management, ASCE, 121, 1, pp. 9-21.

Lettenmaier, D. P. and S. J. Burges (1982), Cyclic storage: a preliminary analysis, Ground Water, 20, 3, pp. 278-288.

Maddock III, T. (1972), Algebraic technological function from a simulation model, Water Resources Research, 8, 1, pp. 129-134.

Matsukawa J., Finney, B. A. and Willis, R. (1992), Conjunctive-use planning in mad river basin, California,  Journal of Water Resources Planning and Management, ASCE, 11, 2, pp. 115-132.

Miller, S. A., Johnson, G. S., Cosgrove, D. M. and Larson, R. (2003), Regional scale modeling of surface and ground water interaction in the Snake river basin, Journal of American Water Resources Association, 39, 3, pp. 517-528.

Morel-Seytoux, H.J. (1975), A simple case of conjunctive surface-groundwater management, Ground Water, 13(6), pp. 506-515.

Nishikawa, T. (1998), Water resources optimization model for Santabarbara, California, Journal of Water Resources Planning and Management, ASCE, 124, No.5, pp. 252-263.

Peralta, R. C., Contiller, R. R. A. and Terry, J. E.  (1995), Optimal large-scale conjunctive water-use planning : case study, Journal of Water Resources Planning and Management, ASCE, 121, 6, pp. 471-478.

Richard, E. G. (1995), Groundwater-surface water management with stochastic surface water supplies: simulation-optimization approach, Water Resources Research, 31, 11, pp. 2845-2865.

Thomas, H. E. (1978), Cyclic Storage, where are you now? Ground Water, 16,  1, pp. 12-17.