پیش بینی احتمالی بارش واسنجیده با سامانه پیش بینی همادی (گروهی) WRF و MM5 در ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی/ پژوهشکده هواشناسی، تهران، ایران

2 دانشجوی کارشناسی ارشد/ هواشناسی، دانشگاه هرمزگان، هرمزگان(بندرعباس)، ایران

3 کارشناس ارشد /بخش اطلاعات و مخابرات سازمان هواشناسی، تهران، ایران.

چکیده

برونداد یک سامانه پیش‌بینی همادی برای انجام پیش‌بینی‌های احتمالی بارش روزانه در سطح کشور با دو مدل‌WRF‌‌ و MM5 به ترتیب با پنج و سه پیکربندی متفاوت واسنجی و ارزیابی‌ شده ‌است. بارندگی تجمعی 257 ایستگاه همدید در سطح کشور در بازه‌ی زمانی اول نوامبر 2008 تا سی آوریل 2009 استفاده‌ شده‌ است. این داده‌ها به دو دوره  سه ماهه تقسیم و برای آموزش استفاده و ارزیابی‌‌‌ شده ‌است. بافت نگار‌رتبه‌ای حاصل از سامانه‌ همادی در دوره آموزش، به دو دسته با انحراف‌ معیار (45/0≥ < s0) و (45/0< s) تقسیم ‌‌شده‌ است. در نهایت  پیش‌بینی بارندگی روزانه برای آستانه‌های  (1/0≥p، 10< p≤  1/0 و 10p > )  میلی‌متر برای هر روز در دوره ارزیابی با استفاده از بافت‌نگار حاصل از دوره آموزش و انحراف‌معیار پیش‌بینی  بارندگی  مربوط  به  اعضای  سامانه  در همان روز واسنجی ‌شده است. نتایج حاصل از سنجه‌های راست‌آزمایی متداول،  نشان می‌دهد که واسنجی به روش بافت نگار رتبه‌ای سبب بهبود پیش‌بینی‌های احتمالی بارش روزانه (‌به ویژه در آستانه بارش‌های سنگین) می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Calibrated Probabilistic Precipitation Forecast Using the WRF and MM5 Ensemble over Iran

نویسندگان [English]

  • M Azadi 1
  • N Kafashzadeh 2
  • Z Zakeri 3
1 Assistant professor of meteorology research institute (MRI), Tehran, Iran
2 MS.c. student in meteorology, University of Hormozgan, Bandar Abbas, Iran.
3 Expert, Information and Dispatching, Meteorology Organization, Tehran, Iran.
چکیده [English]

The output of an ensemble for country-wide daily precipitation probabilistic forecasts were calibrated with two models of WRF and MM5 with respectively 5 and 3 different configurations. The cumulative precipitation of 257 synoptic stations in the country has been used from 1st of November 2008 to 30th of April 2009. These data have been divided into two three-month periods which has been used for training and evaluating. The ensemble's rank histogram in training period, has been divided into two sets with the standard deviations of (0< s <0.45) and (s >0.45). Finally, daily precipitation forecast has been calibrated for thresholds  p≤0.1, 0.1≤ p<10, and p>10 millimeters at each day of the evaluating period. This was done  by means of the rank histogram produced by training period and probabilistic precipitation standard deviation in the same day. For different verification tools it has been shown that calibration with rank histogram leads to an improvement in probabilistic forecasts of daily precipitation (especially in heavy precipitation categories).     
 

کلیدواژه‌ها [English]

  • Ensemble
  • Calibration
  • Rank Histogram
  • Probability Forecast
  • 24-hours Precipitation

آزادی، م. و همکاران، (1388)، "کالیبره­کردن برونداد یک سامانه­ همادی به روش میانگین­گیری­ بیزی"، پروژه پژوهشکده هواشناسی و علوم جو، 73ص.

واشانی، س. (1389)، "پس­پردازش برونداد یک سامانه­ همادی با استفاده از روش شبکه ­عصبی مصنوعی و راست­آزمایی این     سامانه روی منطقه شمال­ایران"، پایان­نامه­ دکتری­ هواشناسی، دانشکده ­علوم ­پایه،دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، 125ص.     

Brier, G. W., and Allen, R. A. (1951), “Verification of weather forecast,” Compendium of Meteorology, AmericanMeteorology Society, 1953pp.

Eckel, F. A., and  Walters, M. K. (1998), “Calibrated probabilistic quantitative precipitation forecast based on the MRF ensemble,” Weather and Forecasting, 13(4), pp. 1132-1147.

Epstein, E. S. (1969), “Stochastic-dynamic prediction,” Tellus, 21(6), pp. 739-759.

Fritsch, J. M., Houze, J., Adler, R., Bluestein, H., Bosart, L., Brown, J., Carr, F., Davis, C., Johnson, R. H., Junker, N., kou, Y. H., Rutledge, S., Smith, J., Toth, Z., Wilson, J. W., Zipser, E., and Zrnic, D. (1998), “Quantitative Precipitation forecasting,” report of eight prospectus development team, US weather research program, Bull. Am. Met. Soc., 79(1), pp. 285-299.

Glahn, H. R., and Lowry, D. A. (1972), “The use of model output statistics (MOS) in objective weather forecasting,” J. Appl. Meteor., 11(8), pp. 1203-1211.

Gneiting, T., Raftery, A. E., Westveld III, A. H., and  Goldman, T. (2005), “Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation,” Mon. Wea. Rev., 133, pp. 1098-1118.

Hamill, T. M. (1997), “Reliability diagram for multicategory probabilistic forecast,” Weather and Forecasting, 12(4), pp. 736-741.

Hamill, T. M., and Colucci, S. J. (1996), “Verification of ETA-RSM short-range ensemble forecast,” Mon.Wea.Rev., 125(6), PP. 1312-1327.

Hamill, T. M., and Colucci, S. J. (1998), “Evaluation of Eta-RSM ensemble probabilistic precipitation forecast,” Mon. Wea. Rev., 126(3), pp. 711-724.

Hamill, T. M., Colucci, S. J., Whitakar, J. S., and Wei, X. (2004), “Ensemble forecasting improvement medium-range forecast skill using retrospective forecasts,” Mon. Wea. Rev., 132(6), pp. 1434-1447.

Hamill, T. M., Colucci, S. J., and Whitakar, J. S. (2006), “Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application ,” Mon. Wea. Rev., 134(11), pp. 3209-3229.

Krishnamurti, T. N., Kiashtawal, T. E., Bachiochi, D. R., Zhan, Z., Williford, C. E., Gadgil, S., and Surendran, S. (1999), “Improved weather and seasonal climate forecasts from a multimodel superensemble”, science, 285(5433), pp. 1548-1550.

Lorenz, E. N. (1963), “Deterministic non-periodic flow,” J. Atoms. Sci., 20(2), pp. 130-141.

Molteni, F., Buizza, R., Palmer, T. N., and Petroloagis, T. (1996), “The new ECMWF Ensemble Prediction System: Methodology and validation,” Quart. J. Roy. Meteor. Soc., 122(529), pp. 73-119.

Murphy, A. H. (1971), “a note on the ranked probability score,” Journal of Applied Meteorology, 10(1), pp. 155-156.

Murphy, A. H. (1993), “What is a good forecast? An essay on the nature of goodness in weather forecasting,” Weather and Forecasting, 8(2), pp. 281-293.

Raftery, A. E., Gmeiting, T., Balabdaoui, F., and Polakowski, M. (2005), “Using Bayesian model averaging to calibrate forecast ensemble,”Mon. Wea. Rev., 133(5), pp. 1155-1174.

Roulston, M. S., and Smith, L. A. (2003), “Combining dynamical and statistical ensemble,” Tellus, 55(1), pp. 16-30.

Stephenson, D. B., Coelho, C. A. S., Balmaseda, M., and Doblas-Reyes, F. J. (2005), “Forecast assimilation: A unified framework for the combination of multi-model weather and climate predictions,” Tellus, 57(3), pp. 253-264. 

Theis, S. E., Hense, A., and  Damrath, U. (2005), “Probabilistic precipitation forecasts from a deterministic model a pragmatic approach,” Meteorol. Appl., 12(3), pp. 257-268. 

Tracton, M. S., and Kalnay, E. (1993), “Ensemble forecasting at NMC:  Practical aspects,” Wea. Forecasting, 8(3), pp. 379-398. 

Wang, X., and Bishop, C. H. (2005), “Improvement of ensemble reliability with a new dressing kernel,” Quart. J. Roy. Meteor. Soc., 131(607), pp. 965-986.

Wilks, D. S., and  Hamill, T. M. (2006), “Comparison of ensemble-MOS methods using GFS reforecasts,” Mon. Wea. Rev., 135(6), pp. 2379-2390.

Wilks, D. S., (2006), Statistical Method in the Atmospheric Sciences, Academic Press, 91, 467p.