اثرات تغییر اقلیم بر بیلان آبی دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 فارغ‌‌التحصیل کارشناسی ارشد/ مهندسی آب، دانشکده عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران.

2 استادیار/دانشکده عمران و محیط زیست ،دانشگاه صنعتی امیرکبیر، تهران، ایران.

3 دانشیار/ پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران.

چکیده

دریاچه ارومیه یکی از بزرگترین و مهم‌ترین اکوسیستم‌های آبی در ایران می‌باشد. با توجه به افزایش دما، تغییرات زیاد در بارندگی و همچنین وقوع خشکسالی در سطح حوضه، تراز آب دریاچه دچار تغییرات زیادی شده است. در این تحقیق تغییرات تراز سطح دریاچه ارومیه ناشی از تغییر اقلیم براساس مدلHadCM3 از سری مدل‌های گردش عمومی جو (GCM) تحت سناریوهای گازهای گلخانه‌ای (B2 و A2) با استفاده از شبکه‌های نرو فازی (ANFIS) برای دوره 2100-2000 شبیه سازی شده است. ورودی‌های ماهانهمدل شبیه سازی شامل بارش بر سطح دریاچه، توسط دمای حوضه آبریز و دبی ورودی به دریاچه می‌باشد. اثرات تغییر اقلیم بر تراز آتی دریاچه ارومیه براساس پیش‌بینی مدل HadCM3 تحت سناریوی A2 حاکی از افزایش میانگین سالانه دما و کاهش میانگین سالانه تراز سطح دریاچه به ترتیب به اندازه 80/2 درجه سانتیگراد و 60/4 متر می‌باشد. همچنین سناریوی  B2 حاکی از افزایش میانگین سالانه دما و کاهش میانگین سالانه تراز سطح دریاچه به ترتیب به اندازه 35/2 درجه سانتی‌گراد و 93/3 متر می‌باشد. با مقایسه سناریوهای  A2و B2 مشاهده گردید که سناریوی A2 حالت بحرانی‌تری را برای شرایط آتی دریاچه ارومیه پیش‌بینی می‌کند و دریاچه تحت سناریوی  A2تا سال 2100  خشک می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The Impact of Climate Change on Urmia Lake Water Level

نویسندگان [English]

  • H Mahsafar 1
  • R Maknoon 2
  • B Saghafian 3
1 Former M.sc Student of Water Eng., Dept. of Civil and Environmental Eng., University of Amirkabir, Tehran, Iran
2 Assistant Professor, Dept. of Civil and Environmental Eng., University of Amirkabir, Tehran, Iran.
3 Associate Professor of Soil Conservation and Watershed Management Research Institute, Tehran, Iran.
چکیده [English]

The Urmia Lake is one of the largest and most important natural ecosystems in Iran. Temperature increase, high fluctuation in rainfall, and frequent droughts have caused high fluctuations in the lake water level. In this research, the monthly change of the Urmia Lake water level under the climate change condition was simulated by the Adaptive Neuro - fuzzy inference system (ANFIS) from 2000-2100 by the HadCM3 model under SRES emission scenario (A2 and B2). Monthly inputs to the model are the rain on the lake, the temperature mean values, and the total inflow discharge. The effect of climate change on future water level based on the projection of the results from HadCM3 model under A2 scenario has shown the increase in average annual temperature and decrease in average annual lake level by 2.80 °C and 4.60 m, respectively. The B2 scenario model predicted increase in the average annual temperature and decrease in the average annual lake level by 2.35 °C and 3.93 m, respectively. Comparin the A2 and B2 scenarios, it was concluded that the A2 scenario predicted a more critical state for the Urmia Lake.

کلیدواژه‌ها [English]

  • Climate change
  • GCM projections
  • ANFIS
  • Urmia Lake

دلاور، م. (1384)، "تحلیل و ارائه مدل نوسانات تراز آب دریاچه ارومیه و آنالیز ریسک مناطق ساحلی"، پایان­نامه کارشناسی ارشد،  دانشگاه تربیت مدرس، تهران، ایران.

شعبانی نیا، ف. و سعیدنیا، س. (1386)، "مقدمه ای بر منطق فازی با استفاده از MATLAB"، انتشارات خانیران، تهران.

عراقی نژاد، ش. و کارآموز، م. (1384)، "پیش بینی بلند مدت رواناب با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی"، تحقیقات منابع آب ایران، شماره 2.

مساح بوانی، ع. و مرید، س.(1384) ، "اثرات تغییر اقلیم بر منابع آب و تولید محصولات کشاورزی" مطالعه موردی حوضه زاینده رود اصفهان، مجموعه مقالات علوم و فنون کشاورزی، سال نهم، شماره چهارم.

مهسافر، ح. (1387)، "بررسی اثرات تغییر اقلیم بر بیلان آبی در یاچه ارومیه"، پایان­نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، تهران، ایران.

Ahrens, B. (2006), “Distance in spatial interpolation of daily rain gauge data”, Journal of Hydrology. Sci, 10, pp. 197–208.

Alcamo, J. P., Doll, F. K. and Siebert, S. (1997), “Global change and global scenarios of water use and availability”, An application of Water GAP 1.0 Report A9701. Center for Environmental Systems Research, University of Kassel, Germany.

Atsushi, U., Masaki, T. and Yoshio, I. (2004), “Lake level change during the past 100,000 years at lake Baikal,  Southern Sibria”, Quater. Reserch, 62, pp. 214-222.

Ayenew, T. (2004), “Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970”, Reg. Environ. Change, Springer-Verlag, pp. 192-204.

Eitzinger, J., Kubu, G. and Formayer, H. (2004), “Impact of climate change on the water level of a shallow lake in eastern Austria”, Institute of Meteorology, University of Natural Resources and Applied Life Sciences (BOKU),Vienna, Austria.

Flato, G. and Boer, G. (2001), “Warming asymmetry in climate change simulations”, Journal of Geophys Research. Lett, 28, pp. 195–198.

Gleick, P. (1987), “The Development and Testing of a Water Balance Model for Climate Impact Assessment: Modeling the Sacramento Basin”, Water Resources Research, 23(6), pp. 1049–1061.

Gunn Persson, L., Graham, P., and Andereasson, J. (2005), “Impact of climate change effects on sea-level rise in combination with an altered river flow in the Lake Malar Region”, Swedish Meteorological and Hydrological Institute, SE 601 76Norrkoping, Sweden.

Harrison, S.P. (1989), “Lake level and climate changes in eastern North America”, Climate Dynamic, pp. 157-167.

Hewitson B.C., and Crane, R. (2006), “Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa”, Journal of Climatology, 26 (10) pp. 1315–1337.

Jang, J. S. R. (1993), “ANFIS: Adaptive-network-based fuzzy inference system”, IEEE Trans. Syst., Man, Cybern, 23(3), pp. 665–684.

Mistry, V.V., and Conway, D. (2003), “Remote forcing of East African rainfall and relationships with fluctuations in levels of Lake Victoria”, Journal of Climatology, 23, pp. 67-89.

IPCC-TGCIA. (1999), “Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment”, Intergovernmental Panel on Climate.

IPCC. (2001), Climate Change, the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 881 p.

IPCC. (2007), “Fourth assessment report climate change”, Paris, http: //www.IPCC.ch.

Wilby, R., Charles, S., Zorita, E., Timbal. B., Whetton, P., and Mearns, L.O. (2004), “Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods”, Technical report, Data Distribution Centre of the IPCC.