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  3کامران داوريو 

 
 چکيده

ثِ علت کوجَد آهبر ٍ اطلاعبت ّویشِ اهکبى استفبدُ اس تحلیل فزاٍاًی 
استفبدُ اس جبکِ ّبی سیلاة ٍجَد ًذارد. اس آىهکبًی جْت تخویي چٌذک
ای کزدى هعوَلاً ًتبیج قبثل قجَلی را ثِ دست یک رٍش ٍاحذ ثزای ًبحیِ

طَر تَأم هَرد استفبدُ قزار ای ثِدّذ، لذا هعوَلاً چٌذیي رٍش هٌطقًِوی
ای ّیجزیذ کِ ّز یک ثِ طَر  گیزد. در ایي هطبلعِ سِ الگَریتن خَشِهی

ثزًذ،  َاحی هشبثِ ثِ کبر هیای کزدى را ثزای تعییي ً جذاگبًِ فزایٌذ خَشِ
ای سلسلِ هزاتجی هتزاکوی ّبی خَشِهَرد ثزرسی قزار گزفت. اس الگَریتن

ای هَرد استفبدُ شبهل پیًَذ تکی، پیًَذ ّبی خَشِاستفبدُ شذ. الگَریتن
 K-meansای تفکیکی شبهل الگَریتن ، ٍ الگَریتن خَشWardِکبهل ٍ 

ای کزدى ثب استفبدُ اس آهبر ٍ ر ًبحیِای ّیجزیذ داست. تأثیز تحلیل خَشِ
ّبی خزاسبى هَرد ثزرسی قزار گزفت.  حَضِ آثزیش استبى 68اطلاعبت 

ای شبهل ضزیت کَفٌتیک، عزض ّوچٌیي چْبر شبخص آسهَى خَشِ
جْت تعییي تعذاد  Dunn  ٍDavies-Bouldinسیلَْت هتَسط، شبخص 

ای ّیجزیذ در خَشِّب هَرد استفبدُ ٍاقع گزدیذ. تحلیل ثْیٌِ خَشِ
سبسی تلاش لاسم جْت ًیل ثِ ًَاحی ّوگي هفیذ ٍ هؤثز ثَد. حذاقل

ای ثزای استفبدُ در ًبحیِ Ward  ٍ K-meansًْبیتبً ّیجزیذ الگَریتن 
 کزدى پیشٌْبد گزدیذ. چْبر ًبحیِ ّوگي تشخیص دادُ شذ.

ًبحیِ ثٌذی، تحلیل فزاٍاًی سیلاة، گشتبٍرّبی خطی،  :کلمات کليدي

 خَشِ ثٌذی.
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Abstract 
Because of the scarcity of flood data, it is not always possible 

to use at-site frequency analysis for flood quantiles 

estimations. No single procedure has a global acceptance in 

regionalization. In this paper, three hybrid-clustering 

algorithms are investigated. Each of these algorithms use the 

partitional clustering procedure to identify groups of similar 

catchments by refining the clusters derived from 

agglomerative hierarchical clustering algorithms. Their 

effectiveness in regionalization are then compared. The 

hierarchical clustering algorithms used are single linkage, 

complete linkage, and Ward’s algorithms. The partitional 

clustering algorithm used is the K-means algorithm. The 

effectiveness of the hybrid-cluster analysis in regionalization 

is investigated using data from 68 watersheds in former 

Khorasan Province, IRAN (now separated as three 

Provinces). Further, four cluster validity indices, namely 

cophenetic correlation coefficient, average silhouette width, 

Dunn’s index, and Davies–Bouldin index are tested to 

determine their effectiveness in identifying optimal partition 

provided by the clustering algorithms. The hybrid-cluster 

analysis is found to be useful in minimizing the effort needed 

to identify homogeneous regions. The hybrid of Ward’s and 

K-means algorithms is recommended for use. Four 

homogeneous zones were detected. 
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1-Introduction 

Due to the scarcity of flood data, it is not always 

possible to use at-site frequency analysis for flood 

quantiles estimations. To contend with this problem, 

hydrologists use data from the nearby watersheds with 

similar flood producing mechanism. Such group of 

watersheds with similar flood responses constitute a 

homogeneous region. The procedure of identifying 

homogeneous regions is traditionally referred to as 

regionalization. Regional flood-frequency analysis 

(RFFA) is widely used for estimation of flood quantiles 

in the design and operation of water resources systems, 

land use planning and management, and flood 

insurance assessment and protection of populated areas. 

The RFFA is recommended for estimation of flood 

quantiles at sites with record length less than 5T, where 

T is the return period of interest (Reed et al., 1999). 

 

Recently, increasing awareness on the use of hydro-

climatic data has prompted several agencies to work on 

databanks related to the hydrological processes. 

Besides, in regionalization studies, there is a need to 

develop potential approaches that are useful to identify 

and interpret patterns inherent in hydrologic data. For 

this task, clustering algorithms is a promising approach 

which are found effective in recognizing the 

distribution of patterns in both large and small data 

sets. Introductory material on cluster analysis is found 

in Kaufman and Rousseeuw (1990), Everitt (1993), 

Gordon (1999) and others. 

 

There is still no generally agreed upon catchment 

classification system. Such a classification framework 

should provide a mapping of landscape form and 

hydro-climatic conditions on the catchment's function 

(including partition, storage, and release of water), 

while explicitly accounting for uncertainty and for 

variability at multiple temporal and spatial scales. This 

framework should provide an organizing principle, 

create a common language, guide modeling and 

measurement efforts, and provide constraints on 

predictions in ungauged basins, as well as on estimates 

of environmental change impacts. Wagner et al. (2007) 

(i) reviewed existing approaches to define hydrologic 

similarity and catchment classification; (ii) discussed 

outstanding components or characteristics that should 

be included in a classification scheme; and (iii) 

provided a basic framework for catchment 

classification as a starting point for further analysis. 

Possible merits to describe form, hydro-climate, and 

function were suggested and discussed. Wagner et al. 

(2007) raised open questions such as: How can we best 

represent characteristics of form and hydro-climatic 

conditions? How does this representation change with 

spatial and temporal scale? What functions (partition, 

storage, and release) are relevant at what spatial and 

temporal scale? At what scale do internal structure and 

heterogeneity become important and need to be 

considered. 

 

As discussed above, there are numerous methods 

available in literature for delineation of the 

homogeneous regions. Shu and Burn (2004) developed 

a couple of methods using fuzzy expert system (FES) 

to derive an objective similarity measure between 

catchments. In their research, the performance of the 

FES was improved by tuning of the membership 

function of the fuzzy sets using a genetic algorithm. 

Abida and Ellouze (2006) adopted a method on the 

shape of the empirical Cumulative Distribution 

Function (CDF) and similarities of physiographic and 

climatic characteristics for hydrologic delineation of 

homogeneous regions in Tunisia. To facilitate 

estimation of streamflow characteristics at an un-

gauged site, hydrologists often define a region of 

influence (ROI) containing gauged sites hydrologically 

similar to the estimation site (Burn, 1990). This region 

can be defined either in geographic space or in the 

space of the variables that are used to predict 

streamflow (predictor variables). These approaches are 

complementary, and a combination of the two may be 

superior to either. So, Eng et al. (2007) proposed a 

hybrid region-of-influence (HRoI) regression method 

that combines the two approaches. To identify 

homogeneous region(s), Atiem and Harmancloglu 

(2006) redefined the region by dividing it into sub-

regions. This was done into two steps: (a) removing 

some sites from the region and using a completely 

different assignment of sites to region(s) by re-adding 

site(s) to the identified homogeneous sub-region(s); and 

(b) adding a cluster feature to the regional sites. 

 

The above methods are, however, either too subjective 

(the last one) or too complicated. The classic approach 

to the problem is routinely done by cluster analysis. 

 

A cluster consists of one or more feature vectors. A 

feature vector (also referred to as ‘data vector’ or 

‘object’) comprises of several attributes or variables. In 

hydrology, the attributes that have been used for RFFA 

include: (i) physiographic catchment characteristics 

such as drainage area, average basin slope, main stream 

slope, stream length, stream density; storage index, soil 

type index such as infiltration potential, runoff 

coefficient or effective mean soil moisture deficit, 

fraction of the basin covered by lakes, reservoirs or 

swamps; (ii) geographical location attributes such as 

latitude, longitude and altitude of catchment centroid; 

(iii) a measure of basin response time such as basin lag 

or time-to-peak; (iv) meteorological factors such as 

storm direction, mean annual rainfall, precipitation 

intensities; and (v) at-site flood statistics. Selection of a 
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suitable set for RFFA, is however an important key, 

since it may drastically change the homogeneous zones. 

Although a subjective approach is still common in 

hydrology (e.g. Rao and Srinivas, 2006), more 

structured approaches are present (e.g. Dinpashoh et 

al., 2004 by using factor analysis; and Lin et al., 2005 

by using principal component analysis). 

 

Clustering is a process by which a set of feature vectors 

is divided into clusters or groups such that the feature 

vectors within a cluster are as similar as possible and 

the feature vectors of different clusters are as dissimilar 

as possible. Clustering algorithms can be broadly 

classified into two categories: Hierarchical clustering 

and Partitional clustering. 

 

Hierarchical clustering proceeds successively by either 

merging smaller clusters into larger ones 

(agglomerative), or by splitting larger clusters to 

smaller ones (divisive). Burn et al. (1997) used the 

agglomerative hierarchical clustering algorithm for the 

regionalization of watersheds in Canada. 

 

Partitional clustering procedures attempt to recover the 

natural grouping present in the data through a single 

partition. Examples of this class of algorithms include 

K-means (MacQueen, 1967), K-median, K-modes and 

K-medoids algorithms (KMA). In hydrology, K-means 

algorithm and its variations for RFFA have been used 

by Wiltshire (1986), Burn (1989), Bhaskar and 

O’Connor (1989), and Burn and Goel (2000). 

 

While the hierarchical clustering procedures are not 

influenced by initialization and local minima, the 

partitional clustering procedures are influenced by 

initial guesses (number of clusters, cluster centers, 

etc.). The partitional clustering procedures are dynamic 

in the sense that feature vectors can move from one 

cluster to another to minimize the objective function. In 

contrast, the feature vectors committed to a cluster in 

the early stages cannot move to another in hierarchical 

clustering procedures. 

 

2. Objectives 

The basic objective of research presented in this paper 

is to investigate the potential of hybrid clustering 

methods in regionalization of watersheds for flood-

frequency analysis.  

 

3. Data and Method 

Three hybrid-cluster algorithms, which are a blend of 

agglomerative hierarchical and partitional clustering 

procedures, are presented. The hierarchical clustering 

algorithms considered for hybridization are single 

linkage, complete linkage, and Ward’s algorithms. The 

partitional clustering algorithm used is the K-means 

algorithm. The performance of the hybrid-cluster 

algorithms is evaluated using annual maximum flow 

data from watersheds in Khorasan Provinces. Further, 

four cluster validity indices, namely cophenetic 

correlation coefficient, average silhouette width, 

Dunn’s index, and Davies–Bouldin index are tested to 

determine the effectiveness of these indices in 

identifying optimal partition provided by the clustering 

algorithms. 

 

The hybrid-clustering algorithm for regionalization of 

watersheds uses Kmeans algorithm (a partitional 

clustering algorithm) to identify groups of 

homogeneous catchments by refining the clusters 

derived from agglomerative hierarchical clustering 

algorithm. 

 

3.1. Hybrid algorithm 

Let  Nii ,,1/  xX  denote a set of N feature 

vectors in m-dimensional attribute space (i.e. 

  m

imii Rxx  ,,1x ), each of which characterizes 

one of the N sites. Further, let iy  denote the ith 

rescaled feature vector in the m-dimensional attribute 

space 

 

  m

imii yy  ,,1y obtained by rescaling ix  

using Eq. (1) 

   m,,1jxf
σ

w
y ij

j

j

ij   (1) 

In Eq. (1),  f  represents the transformation function; 

ijx  denotes the value of attribute j in the m-

dimensional feature vector ix ; ijy denotes the rescaled 

value of ijx ; ijw is the weight assigned to attribute j; 

j is the standard deviation of attribute j. 

 

The K clusters  formed in the step ‘N–K’ of an 

agglomerative hierarchical clustering algorithm are 

used to initialize the K-means algorithm (Hartigan and 

Wong, 1979). The K-means algorithm (KMA) is an 

iterative procedure in which the feature vectors move 

from one cluster to  another to minimize the value of 

objective function, F, defined in Eq. (2) 

 
  


K

1k

m

1j

N

1i

k

j

k

ij

2
k

yydF  (2) 

In Eq. (2), K denotes the number of clusters, kN  

represents the number of feature vectors in cluster k; 
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k

ijy  denotes the rescaled value of attribute j in the 

feature vector i assigned to cluster k; 
k

jy  is the mean 

value of feature j for cluster k (Eq. (3)) 






 
kN

1i

k

ij

1

k

k

j yNy  (3) 

By minimizing F in Eq. (2), the distance of each feature 

vector from the center of the cluster to which it belongs 

is minimized.  d  denotes an appropriate distance 

measure such as Euclidean which is suitable for 

clusters with spherical shape. 

 

The optimal value attained by the objective function, F, 

depends on cluster centers used to initialize the  KMA. 

There is no single procedure of initializing the cluster 

centers to yield a global minimum value for the 

objective function, F. Several methods of initialization 

are in use. Wiltshire (1986) randomly partitioned data 

to initiate the clustering algorithm. Bhaskar and 

O’Connor (1989) considered initial cluster centers as 

feature vectors that are separated by at least a specified 

minimum distance. Burn (1989) suggested choosing K 

of the N feature vectors as the starting centroids to 

ensure that each cluster has at least one member (Burn, 

1989). In the present study, results from the 

hierarchical clustering algorithms namely, single 

linkage, complete linkage and Ward’s algorithm are 

used to provide initial cluster centers for the KMA. 

 

Every feature vector is assigned to a cluster center that 

is nearest to it among the K clusters. After assigning 

the feature vectors to the K-cluster centers, the center 

of each of the K-clusters is updated and the value of the 

objective function, F, is computed. This completes an 

iteration of K-means algorithm. The procedure of 

assigning feature vectors to nearest cluster centers and 

updating the cluster centers is repeated in each of the 

subsequent iterations. The algorithm is stopped at a 

point when change in the value of objective function 

between two successive iterations becomes sufficiently 

small. 

 

3.2. Single linkage and complete linkage 

algorithms 

The algorithms begin with N singleton clusters each 

comprising a rescaled feature vector. Among the N 

singleton clusters, two closest clusters iy  and jy  are 

identified and merged to form a new cluster [ iy , jy ]. 

In the single linkage algorithm the distance between the 

new cluster [ iy , jy ] and any other singleton cluster 

ky  is the smaller of the distances between iy  and ky  

or jy  and ky . On the other hand, in complete linkage 

algorithm the distance between the new cluster [ iy ,

jy ] and any other singleton cluster ky  is the greater 

of the distances between iy  and ky  or jy  and ky . 

 

At each step, the two closest clusters are identified and 

merged. As a consequence, the number of available 

clusters decreases by one with each additional step. The 

algorithms are terminated at the step when the number 
of clusters is equal to the specified value K. 

 

3.3. Ward’s algorithm 

The objective function of Ward’s algorithm, W (Ward, 

1963) minimizes the sum of squares of deviations of 

the feature vectors from the centroid of their respective 

clusters (Eq. (4)) 

 
  


k

1k

m

1j

N

1i

2k

j

k

ij

k
yyKW  (4) 

The Ward’s algorithm starts with singleton clusters. At 

this point the cluster centers are the same as feature 

vectors. Therefore, the value of objective function is 

zero. At each step in the analysis, union of every 

possible pair of clusters is considered and the two 

clusters whose fusion  give the smallest increase in W 

are merged. 

 

Ward’s algorithm is good at recovering cluster 

structure and it tends to form spherical clusters of equal 

size. This characteristic of the Ward’s algorithm makes 

it useful in identification of homogeneous regions for 

regionalization (Hosking and Wallis, 1997). 

 

3.4. Cluster validity 

Cluster validity indices have been extensively used to 

determine optimal number of clusters (K) in a data set 

(Everitt, 1993; Halkidi et al., 2001). In this study, four 

cluster validity indices, namely cophenetic correlation 

coefficient (Sokal and Rohlf, 1962), average 

silhouesft6ttte width (Rousseeuw, 1987), Dunn’s index 

(Dunn, 1973), and Davies–Bouldin index (Davies and 

Bouldin, 79)  are tested to determine their effectiveness 

in identifying optimal partition provided by the 

clustering algorithms for RFFA. 

 

The cophenetic correlation coefficient, abbreviated as 

CPCC by Farris (1969), is a validity measure for 

hierarchical clustering algorithms. A hierarchical 

clustering process can be represented as a nested 

sequence or tree, called dendrogram, which shows how 

the clusters that are formed at the various steps of the 

process are related. The CPCC is used to measure how 
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well the hierarchical structure from the dendrogram 

represents in two dimensions the multidimensional 

relationships within input data. The CPCC is defined as 

the correlation between the M=N(N-1)/2, original 

pairwise dissimilarities (proximity) between the feature 

vectors, and their cophenetic dissimilarities from the 

dendrogram. The cophenetic dissimilarity, ijc , 

between two feature vectors i and j is the intercluster 

distance at which the two feature vectors are first 

merged in the same cluster. 

 
























  

 



 



 



 

1N

1i

N

1ij

2

c

2

ij

1N

1i

N

1ij

2

p

2

ij

1N

1i

N

1ij
cpijij

c
M

1
d

M

1

cdM1

CPCC

      (5) 

 

In Eq. (5), p  and c  are the means of elements in 

proximity and cophenetic matrices respectively, 

whereas ijd  and ijc  are respectively the (i,j)th 

elements of proximity and cophenetic matrices. The 

concordance between the input data and the 

dendrogram is close if value of the index is close to 1.0. 

A high value for CPCC is regarded as a measure of 

successful classification. A value of 0.8 or higher 

indicates that the dendrogram does not greatly distort 

the original structure in the input data (Romesburg, 

1984). 

 

The silhouette width (Rousseeuw, 1987) for a feature 

vector is a measure of how similar that feature vector is 

to feature vectors in its own cluster compared to feature 

vectors in other clusters. The silhouette width s(i) for 

the ith feature vector in a cluster k is defined as 

 )(),(max

)()(
)(

ibia

iaib
is


  (6) 

In Eq. (6),  ia is the average distance of the ith feature 

vector to all other feature vectors in the cluster k;  ib  

is the minimum average distance of the ith feature 

vector to all the feature vectors in another cluster j  

( kjKj  ,,1 ). From this formula it follows that

1)(1  is . 

 

If s(i) is close to 1, we may infer that the ith feature 

vector has been assigned to an appropriate cluster. On 
the other hand, when s(i) is close to -1, we may 

conclude that the ith feature vector has been 

misclassified. When s(i) is approximately zero, it 

indicates that the ith feature vector lies equally far 

away from the two clusters. For the given K clusters, 

the overall average silhouette width is the average of 

the silhouette widths for all the feature vectors in the 

dataset. The partition with the maximum overall 

average silhouette width is taken as the optimal 

partition. 

 

Dunn’s index (Dunn, 1973) and Davies– Bouldin index 

(Davies and Bouldin, 1979) are widely recognized for 

their ability to identify sets of clusters that are compact 

and well separated. The Davies– Bouldin index is a 

function of the ratio of the sum of within-cluster scatter 

to between-cluster separation. 

 

Suppose that the given set of N-feature vectors (in m-

dimensional space) has been partitioned into K clusters 

 kCCC ,,, 21   such that cluster kC  has kN  feature 

vectors and each feature vector is in exactly one cluster. 

The scatter within the kth cluster, qkS , , is computed 

using Eq. (7) and the Minkowski distance of order t 

between the centroids that characterize clusters jC and 

kC  is defined by Eq. (8). 

q

ki

k

qk

q

N
S

kCi

1

,
2

1














 

y

zy  
(7) 

tkjtjkd zz ,  (8) 

where kz  represents the center of cluster k and qkS ,  is 

the qth root of the qth moment of the points in cluster k 

with respect to their means. In this work the first 

moment (i.e. q=1) and Minkowski distance of order 2 

(i.e. t=2) which are commonly adopted by practitioners 

(Rao and Srinivas, 2006), have been used. The Davies–

Bouldin index is computed using Eq. (9). A small value 

for DB indicates good partition, which corresponds to 

compact clusters with their centers far apart. 




 









 


K

k tjk

qjqk

kjj d

SS

K
DB

1 ,

,,

,
max

1
 (9) 

Dunn’s index is computed using Eq. (10)  

 
  

























 





k

Kk1

ji

ij,Kj1Ki1 CΔmax

C,C
minminD  (10) 

where  
ji CC ,  denotes the distance between clusters 

iC  and jC  (intercluster distance) computed by Eq. 

(11);  kCΔ  represents the intracluster distance of 

cluster kC defined by Eq. (12). The value of K for 

which D is maximized is taken as the optimal number 

of clusters.
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    
ji

CC
ji dCC

jjii

yy
yy

,max,
, 

  (11) 

    
ji

Cyy
k dC

kji

yyΔ ,max
, 

  (12) 

where  
jid yy ,  is the distance between rescaled 

feature vectors iy and jy . 

 

3.5. Regional homogeneity test 

Following Hosking and Wallis approach (1993, 1997), 

the heterogeneity of the set of plausible regions 

obtained from the cluster analysis is assessed in this 

study using the homogeneity tests. They use the 

advantages offered by sampling properties of L-

moment ratios. Three heterogeneity measures H1, H2, 

and H3 suggested by Hosking and Wallis (1993) are 

used in the present study;  

 

(i) A heterogeneity measure (HM) based on L-

coefficient of variation (L-CV): 

 

v

v

1

V
H




  (13) 

 (ii) A measure based on L-CV and L-skewness: 

 

2v

2v2

2

V
H




  (14) 

 (iii) A measure based on L-skewness and L-kurtosis: 

 

3v

3v3

3

V
H




  (15) 

In Eq. (13), V denotes the weighted standard deviation 

of the at-site sample L-CVs; In Eq. (14), 2V  represents 

the weighted average distance from the site to the 

group weighted mean in the two dimensional space of 

L-CV and L-skewness; In Eq. (15), 3V  refers to the 

weighted average distance from the site to the group 

weighted mean in the two dimensional space of L-

skewness and L-kurtosis; v , 2v and 3v denote the 

means of the simN  values of V, 2V  and 3V  

respectively; v , 2v  and 3v  represent the standard 

deviations of the simN values of V, 2V  and 3V  

respectively. In the present study, the value of simN is 

chosen as 500. 

 
A straightforward computation of V, V2, and V3 can be 

found in Hosking and Wallis (1997; pp 63-67). A 

region is regarded as ‘acceptably homogeneous’ if the 

heterogeneity measure 1HM , ‘possibly 

homogeneous’ if 2HM1  , and ‘definitely 

heterogeneous’ if 2HM . Further details on the 

homogeneity test are found in Hosking and Wallis 

(1997). 

 

3.6. Discordancy measure 

The regions obtained from the cluster analysis are 

adjusted following the suggestions of Hosking and 

Wallis (1997) to improve their homogeneity.  

Adjustment of a region involves exclusion of those 

sites from the region, which are grossly discordant with 

respect to other sites in it. In this study the discordancy 

measure proposed by Hosking and Wallis (1993) is 

used to identify those sites in a cluster that are grossly 

discordant. For details, consult with Hosking and 

Wallis (1997; pp 45-49). 

 

Hosking and Wallis (1993; 1997) provide critical 

values for the discordancy measure to declare a site 

unusual. In many instances the catchment discordancy 

may arise out of sampling variability. Therefore, the 

data at all the sites with the largest discordancy values 

should be closely scrutinized, regardless of the 

magnitude of the discordancy values, before deciding 

whether the sites are discordant. 

 

3.7. Data used in the study 

The area of three Khorasan provinces is about 313000 

km2 (see Fig.1). These provinces have an arid and 

semi-arid climate. The highest elevation in this area is 

the Binalood Peak, with a height of about 3300 masl. 

The lowest point in the area is the downstream of 

Sarakhs plain with an altitude of about 250 masl. A 

climatic diversity can be observed in the area due to 

deserts and high mountains. This results in a highly 

temporal and spatial rainfall distribution. In general 

rainfall decreases from north-west to south and south-

east. Sixty eight watersheds in Khorasan Provinces  

were considered in this study. 

 

The data was collected from 3 Khorasan Water 

Authorities. Attributes such as height, latitude, and 

longitude of the stations, area, form factor, slope, and 

length of the main river of each catchment is used. The 

full data is reported elsewhere (Shamkooian et al., 

2009). The location attributes, latitude and longitude, 

are included in the feature vector to identify regions 

that are geographically contiguous. Each of the nine 

attributes were standardized by Eq. (1). Equal weight 

was assigned to all attributes, implying equal 

importance to all features. 
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Figure 1- Location of Khorasan Provinces (North, 

Razavi, and South) in Iran (top), and location of 

hydrometric stations in Khorasan, Iran (bottom). 

 

4. Results and discussion 

4.1. Cluster analysis 

The K clusters obtained from the agglomerative 

hierarchical clustering constituent of the hybrid model 

after 68-K merges are used to initiate the K-means 

algorithm. The value of the objective function (Eq. 2), 

in general, decreases with increase in the number of 

clusters. It has maximum value when all the feature 

vectors are lumped into a single cluster and has a 

minimum value of zero when K equals the number of 

feature vectors considered for the cluster analysis. 

 

Variation in the optimal value of objective function for 

K ranging from 1 to 10 is presented in Table 1 for each 

of the three hybrid-cluster models and their respective 

hierarchical clustering constituents, namely single 

linkage, complete linkage and Ward’s hierarchical 

clustering algorithms. 

 

Of the three hierarchical clustering constituents of the 

hybrid model, Ward’s algorithm gave the minimum 

value for the objective function (Table 1). Sum of F for 

all Ks from 1 to 10 corresponding to SL, CL, and W are 

4021, 3173, and 3070, respectively. As expected, the 

performance of each of the three hybrid-clustering 

algorithms in minimizing the objective function is 

better than that of the hierarchical clustering algorithm 

used to initialize them. In particular, the blend of 

Ward’s algorithm and KMA gave the minimum value 

of objective function for values of K in the range of 3 to 

10, 1 and 2 as exceptions. In essence, the overall 

performance of hybrid models in minimizing the 

objective function is better than that of the hierarchical 

and the K-means clustering model considered 

separately. 

 

In a hybrid-clustering algorithm, the hierarchical 

clustering model is expected to provide more 

meaningful initial values to the KMA, so that the KMA 

provides better and meaningful output. However, one 

cannot guarantee a better output from KMA by hybrid-

clustering. This point is evident from the results 

presented in Table 1 in selecting K equal to 5 and 6, for 

which the KMA initialized with the random K feature 

vectors in the data set, provided the smallest value for 

the objective function, yet the differences are 0.3 and 
1.2% for K=5 and 6, respectively. In other words, one 

can always consider hybrid-clustering as a "potential" 

option to initialize K-means algorithm; however it is 

not always the best choice.  

 

Before hybridization, the clusters obtained from single-

linkage, complete-linkage, and Ward’s clustering 

algorithms were examined. The clusters obtained from 

single linkage algorithm consisted of one large cluster 

and several small clusters, indicating that the algorithm 

is not suitable for regionalization. But the clusters 

obtained from Ward’s algorithm are well separated. 

The clusters obtained from the hybrid of Ward’s 

algorithm and KMA are found to be very similar to 

those resulting from Ward’s algorithm (the difference 

is around 4%). In contrast, the clusters resulting from 
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Table 1- Minimization of objective function (dimensionless) using hierarchical, K-means, and hybrid-

clutering models.
a
 

K 
Hierarchical 

K-means 

(KM) 

 

Hybrid-clustering 

       SL                  CL                  W      SL+KM           CL+KM         W+KM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

603.00 

482.19 

462.62 

430.44 

404.68 

354.05 

347.81 

332.80 

317.75 

285.91 

603.00 

449.25 

386.03 

318.46 

293.41 

276.60 

253.83 

221.69 

190.44 

180.01 

603.00 

449.25 

375.62 

310.11 

278.10 

254.20 

231.43 

209.31 

188.23 

170.63 

603.00 

449.25 

360.44 

298.05 

268.92 

241.63 

223.74 

199.67 

186.73 

164.04 

603.00 

449.25 

374.02 

296.93 

273.42 

251.01 

230.17 

205.72 

185.50 

178.36 

603.00 

449.25 

365.72 

297.28 

269.43 

248.67 

225.81 

207.73 

187.94 

165.30 

603.00 

449.25 

360.44 

297.28 

269.78 

244.58 

221.21 

199.29 

176.69 

162.54 
a K represents number of clusters: SL denotes single linkage; CL refers to complete linkage; W denotes Ward’s 

 

single linkage algorithm are considerably modified by 

KMA (the difference is around 31%). 

 

4.2. Cluster validity 

The cluster validity indices, namely cophenetic 

correlation coefficient (CPCC), average silhouette 

width, Dunn’s index (D) and Davies–Bouldin index 

(DB) are computed for the clusters obtained from the 

clustering methods using Eqs. (5)–(12) to determine 

optimal number of clusters in the dataset. 

 

The CPCC is found to be considerably high for clusters 

obtained from single linkage algorithm. It is higher 

than in clusters obtained from complete linkage and 

Ward’s algorithms (Table 2). 

 

Table 2- Cluster validity using Cophenetic 

correlation Coefficient (CPCC) 
 

Algorithm                                                  CPCC 

Single linkage                                   0.803 

 Complete linkage                             0.655 

 Ward’s                                             0.674 

 

Following the definition of CPCC, an arguement may 

come up that the multi-dimensional relationship within 

the input data is represented better in the dendogram 

provided by single linkage algorithm than in the 

dendograms provided by complete linkage and Ward’s 

algorithms. This is in contradiction to our earlier 

findings. Moreover, for the dataset considered herein, 

single linkage algorithm provides several singleton 

clusters and one very large cluster. This defeats the 

purpose of regionalization because such regions are 

highly heterogeneous. 

 

The average silhouette width (ASW), which has a 

feasible range from -1 to +1, varied generally within a 

narrow range of 0.118 to 0.762 for the data over the 

variety of clustering options considered. The positive 

signs for all ASWs indicate that all feature vectors are 

assigned to appropriate clusters. The ASW is 

reasonably high for single linkage clustering with K in 

the range 2 to 6, for complete linkage clustering with K 

in the range 9 to 10, and for Ward’s clustering with K 

in the range 7 to 8  (Table 3). However, these cases 

provide one large heterogeneous region (cluster) and 

very small regions, which due to heterogeneity are not 

suitable for regionalization. In general, the ASW of 

hybrid-clusters is marginally higher than that of the 
hierarchical clusters used to initialize the Kmeans 

algorithm (Table 3), suggesting improvement in 

performance due to hybridization. 

 

Among the hybrid- clustering models the ASW is 

found to be optimal, for the clusters obtained from the 

hybrid of single linkage and K-means algorithms with 

K equal to 8 (Table 3). But as stated above, adopting 

single linkage is not a good option. The ASW of the 

hybrid of Ward’s and K-means with K equal to 4, is 

found to be maximum. 

 
Fig. (2) supports that as K increases, the performances 

of both indicators D and DB increases. This is more 

pronounced up to K=6. As K is greater than 6, these 

indicators oscillate. So in the range of 6K   it seems 

that L=4 is better for the hybrid of W+KM; D is 

maximum and DB is minimum. The Dunn’s index and 

the Davies–Bouldin index also indicate the hybrid of 

Ward’s and K-means algorithms to be the best (Fig. 2). 

 

The heterogeneity measures of Hosking and Wallis 

(1993) described in Eqs. (13) to (15), were used to test 

if the clusters resulting from the Ward’s and K-means 
hybrid-clustering for K=4 are statistically 

homogeneous. The results are presented in Table 4. All 

measures are negative which may be an indication that 

regions are cross correlated (see page 71 of Hosking 
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and Wallis -1997- for clarification). A number of 

statistical homogeneity tests are proposed in the 

scientific literature. It is documented that the inter-site 

correlation of floods is normally not negligible. The 

documents however does not specifically address the 

impact of cross-correlation on such statistical tests. 

Casterllarin et al. (2008) analyzed the effectiveness of a 

well-known homogeneity test for an inter-site cross-

correlation through a series of Monte Carlo 

experiments. They proposed the following empirical 

corrector of the test based upon H1 for providing an 

approximate indication in the presence of cross-

correlation: 

 1RCHH
__

2
1adj,1   (16) 

 

Table 3- Cluster validity using Silhouette width (dimensionless )—a comparison between hierarchical, K-

means and hybrid-clustering models (K represents number of clusters; SL denotes single linkage; CL refers 

to complete linkage; W denotes Ward’s) 

K 
Hierarchical 

K-means 

(KM) 

 

Hybrid-clustering 

      SL             CL              W   SL+KM             CL+KM         W+KM  

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.762 

0.425 

0.414 

0.384 

0.346 

0.303 

0.148 

0.118 

0.178 

0.684 

0.245 

0.309 

0.314 

0.304 

0.314 

0.276 

0.329 

0.322 

0.321 

0.274 

0.339 

0.313 

0.324 

0.344 

0.312 

0.326 

0.289 

0.321 

0.322 

0.383 

0.397 

0.342 

0.322 

0.348 

0.365 

0.374 

0.332 

0.352 

0.383 

0.355 

0.362 

0.378 

0.395 

0.317 

0.329 

0.332 

0.311 

0.378 

0.343 

0.330 

0.342 

0.326 

0.339 

0.377 

0.322 

0.322 

0.379 

0.323 

0.351 

0.372 

0.341 

0.358 

0.364 

 

 

 
Figure 2- Identification of optimal partition provided by the hybrid-clustering algorithms using Dunn’s 

index and Davies–Bouldin index for the data set. The partition with the maximum value for Dunn’s index 

and the minimum value for Davies–Boulding index is taken as the optimal partition. 
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Table 4- Heterogeneity measures for the Ward’s 

and K-means hybrid-clustering for K=4 

RN NS RS Heterogeniety measure 
H1 H2 H3 

1 14 293 -0.96 
(-0.78)* 

-0.61 -0.34 

2 5 142 -0.99 
(-0.96) 

-0.15 -0.23 

3 19 381 -0.89 
(-0.61) 

-0.17 -0.26 

4 30 725 -0.98 
(-0.80) 

-0.19 -0.08 

RN=region number, NS=number of stations, RS=region size in 

station number (i.e. total record length). 

* Numbers in parentheses are corresponding H values for 

uncorrelated regions (see Eq. 16). 

 

where H1,adj is the adjusted value of the heterogeneity 

measure, H1 is the value resulting from the 

homogeneity test, C is the empirical coefficient of the 

corrector that is assumed to be constant, 
__

2  is the 

average squared correlation of concurrent flows, and R 

is the number of sequences in the region. In the present 

research, 
__

2 is computed for the 4 regions as 0.11, 

0.05, 0.14, and 0.08. Assuming that C=0.122 

(Casterllarin et al., 2008), the values of H1,adj are 

reported in Table 4. By this correction, the results 

presented in Table 4 indicate an acceptable 

homogeneity in all regions. 

 

In this study the discordancy measure proposed by 

Hosking and Wallis (1993) is used to identify those 

sites in a cluster that are grossly discordant (see 

Hosking and Wallis, 1997; pp 45-49). The values of the 

discordancy measure were in the range of 0.03-4.3. 

Compared to critical values (Hosking and Wallis, 

1997), one station in region 3 and three stations in 

region 4 were found to be discordant (more 

clarification can be found in Shamkooian et al., 2009). 

These were ignored for RFFA studies. In the first and 

second region no sites were found to be discordant. 

 

The location of cordant stations and their regions are 

presented in Fig. 3. This Figure supports that it is not 

possible to group the stations in closed boundaries to 

form separate clusters. The stations of one cluster are 

distributed in different locations. Such differentiation is 

not unusual in hydrology, however. Rao and Srinivas 

(2006) reported such distribution for FFA in Indiana, 

USA. A similar result is reported by Lin et al. (2005) 

for clustering autographic rain gages to study rainfall 

hyetographs in central Taiwan. 

 

5. Summary, conclusions, and  

recommendations 

Three hybrid-clustering algorithms, which are a blend 

of agglomerative hierarchical and partitional clustering 

procedures are investigated and used for regionalization 

of watersheds for flood-frequency analysis. The 

hierarchical clustering algorithms considered for 

hybridization are single linkage, complete linkage, and 

Ward’s algorithms. The partitional clustering algorithm 

used is the K-means algorithm (KMA). 

 

Of the three hybrid models presented, the combination 
of Ward’s and K-means algorithms consistently 

provided good initial estimates of groups of 

watersheds. 

 

In a hybrid-clustering algorithm, we expect the 

hierarchical clustering model to provide more 

meaningful initial values to the KMA, so that the KMA 

provides better and meaningful output. However, one 

cannot guarantee a better output from KMA by hybrid-

clustering. In other words, one can always consider 

hybrid-clustering as a potential option to initialize K-

means algorithm, however it is not always the best 

choice. 

 

The effectiveness of four cluster validity indices, 

namely cophenetic correlation coefficient (CPCC), 

average silhouette width (ASW), Dunn’s index, and 

Davies–Bouldin index are tested in identifying optimal 

partition provided by the clustering algorithms. The 

CPCC is found to be inefficient, whereas the ASW 

performed reasonably well. The Dunn’s index and 

Davies–Bouldin index are found to be effective in 

identifying optimal partition, and is found to contain 

near-homogeneous clusters. 

 

By these cluster validity indices, four clusters resulting 
from the Ward’s and K-means hybrid -clustering were 

considered as optimal partition. The heterogeneity 

measures of Hosking and Wallis (1993) were used to 

test if these clusters are statistically homogeneous. The 

results indicated that all the regions are acceptably 

homogeneous. Finally these clusters can be used in 

regional flood frequency analysis. Using the 

discordancy test, one station in region 3 and three 

stations in region 4 were found to be discordant. Iin the 

first and second regions no sites were found to be 

discordant. By ignoring these stations we can use the 

regions for RFFA studies. 

 

The presence of significant non-stationarity in a 

hydrologic time series as well as the climate change, 

cannot be ignored when estimating design values for 

future time horizons. There are so many researches 

published in literature dealing with such subject in 
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hydrology (i.e. Burn and Elnur, 2002; Cunderlik and 

Burn, 2003; Abdul Aziz and Burn, 2006; Sharif and 

Burn, 2006). However, none of them have dealt with 

the regionalization issue and there is still a gap which 

needs more consideration. 

 

 

Figure 3- Location of the regions defined by using 

the hybrid-cluster analysis. Three distinct parts are 

due to North Khorasan (top), Razavi Khorasan 

(middle), and South Khorasan (bottom), 

respectively. 

 

List of abbreviations: 

ASW average Silhoutte width 

CL complete linkage 

CPCC cophenetic correlation coefficient 

D Dunn's index 

DB Davies-Bouldin index 

HM heterogeneity measure 

KMA K-mean algorithm 

RFFA Regional flood frequency analysis 

SL single linkage 

W Ward 

 

6. References 

Abdul Aziz, O.I., and Burn, D.H. (2006). "Trends and 

variability in the hydrological regime of the 

Mackenzie River Basain", Journal of Hydrology, 

319, pp. 282-294. 

Abida, H., and Ellouze, M. (2006). "Hydrological 

delineation of homogeneous regions in Tunisia", 

Water Resources Management, 20, pp. 961-977. 

Atiem, I., and  Harmancloglu, N.B. (2006). 

"Assessment of regional floods using L-moments 

approach: the case of the River Nile", Water 

Resources Management, 20, pp. 723-747. 

Bhaskar, N.R., and  O’Connor, C.A. (1989).  

"Comparison of method of residuals and cluster 
analysis for flood regionalization", Journal of 

Water Resources Planning and Management, 115 

(6), pp. 793–808. 

Burn, D.H. (1989). "Cluster analysis as applied to 

regional flood frequency", Journal of Water 

Resources Planning and Management, 115 (5), pp. 

567–582. 

Burn, D.H. 1990. "Evaluation of regional flood 

frequency analysis with a region of influence 
approach", Warer Resources Research, 26(10), pp. 

2257-2265. 

Burn, D.H., and Elnur, A.H. (2002). "Detection of 

hydrologic trends and variability", Journal of 

Hydrology, 255, pp. 107-122. 

Burn, D.H., and  Goel, N.K. (2000). "The formation of 

groups for regional flood frequency analysis", 

Hydrological Sciences Journal, 45 (1), pp. 97–112. 

Burn, D.H., Zinji, Z. and Kowalchuk, M. (1997). 

"Regionalization of catchments for regional flood 

frequency analysis", Journal of Hydrologic 

Engineering, ASCE, 2(2), pp. 76-82. 

Casterllarin, A., Burn, D.H., and Brath, A. (2008). 

"Homogeniety testing: how homogeneous do 

heterogeneous cross-correlated regions seem?", 

Journal of Hydrology, 360, pp. 67-76. 

Cunderlik, J.M., and Burn, D.H. (2003). "Non-

stationary pooled flood frequency analysis", 

Journal of Hydrology, 276, pp. 210-223. 

Davies, D.L., and  Bouldin, D.W. (1979). "A cluster 
separation measure". IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 1, pp. 224–227 

Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., 

Jahanbakhsh, S., and Mirnia, M. (2004). "Selection 

of variables for the purpose of regionalization of 

Iran's precipitation climate using multivariate 

methods", Journal of Hydrology, 297, pp. 109-123. 

Dunn, J.C. (1973). "A fuzzy relative of the ISODATA 

process and its use in detecting compact well-



 

 1331، پائيس 3تحقيقات منابع آب ايران، سال ششم، شماره 

Volume 6, No. 3, Fall 2010 (IR-WRR) 

    133  
 

12 

 separated clusters". Journal of Cybernetics, 3, pp. 

32–57. 

Eng, K., Milly, P.C.D., and Tasker, G.D. (2007). 

"Flood regionalization: a hybrid geographic and 

predictor-variable region-of-influence regression 
method", Journal of Hydrologic Engineering, 

ASCE, 12(6), pp. 585-591. 

Everitt, B. (1993). Cluster Analysis, Third ed. Halsted 

Press, New york, 280p. 

Farris, J.S. (1969). "On the cophenetic correlation 

coefficient". Systematic Zoology, 18, pp. 279–285. 

Gordon, A.D. (1999). Classification, Second ed. 

Chapman & Hall/CRC, London, 320p. 

Halkidi, M., Batistakis, Y., and Vazirgiannis, M. 

(2001). "On clustering validation techniques". 

Journal of Intelligent Information systems, 17 (2/3), 

pp. 107–145. 

Hartigan, J.A., and Wong, M.A. (1979). "Algorithm AS 

136: a K-means clustering algorithm". Applied 

Statistics, 28, pp. 100–108.  

Hosking, J.R.M., and Wallis, J.R. (1993). "Some 

statistics useful in regional frequency analysis". 
Water Resources Research, 29 (2), pp. 271–281 

(Correction:Water Resources Research 31(1), pp. 

251, 1995). 

Hosking, J.R.M., and Wallis, J.R. (1997). Regional 

frequency analysis: an approach based on L-

moments. Cambridge University Press, New York, 

USA., 224p. 

Kaufman, L., and Rousseeuw, P. (1990). Finding 

Groups in Data: An Introduction to Cluster 

Analysis. Wiley, New York., 308p. 

Lin, G.-F., Chen, L.-H., and Kao, S.-C. (2005). 

"Development of regional design hyetographs", 
Hydrological Processes, 19, pp. 937-946. 

MacQueen, J. (1967). "Some methods for classification 

and analysis of multivariate observations". In: Le 
Cam, L.M., Neyman, J. (Eds.), Proceedings of the 

Fifth Berkeley Symposium on Mathematical 

Statistics and Probability, Vol. 1. University of 

California Press, Berkeley, CA, pp. 281–297. 

Rao, A.R., and Srinivas, V.V. (2006). "Regionalization 

of watersheds by hybrid-cluster analysis", Journal 

of Hydrology, 318, pp. 37-56. 

Reed, D.W., Jakob, D., and Robson, A.J. (1999). 

Selecting a pooling group. In: Robson, A.J., Reed, 

D.W. (Eds.), Statistical procedures for Flood 

Frequency Estimation, Flood Estimation Handbook, 

vol. 3. Institute of Hydrology, Wallingford, UK 

(chapter 6). 

Romesburg, H.C. (1984). Cluster Analysis for 

Researchers. Lifetime Learning Publications, 

Belmont, CA., 205p. 

Rousseeuw, P.J. (1987). "Silhouettes: a graphical aid to 

the interpretation and validation of cluster analysis". 
Journal of Computational and Applied 

Mathematics, 20, pp. 53–65. 

Shamkooian, H., Ghahraman, B., Davary, K., and 

Sarmad, M. (2009). "Flood frequency analysis 

using linear moments and flood index method in 

Khoranan provinces", Journal of Water and Soil, 

23(1), pp. 31-43 (in Persian). 

Sharif, M., and Burn, D.H. (2006). "Simulating climate 

change scenarios using an improved K-nearest 

neighbor model", Journal of Hydrology, 325, pp. 

179-196. 

Shu, C., and Burn, D.H. (2004). "Homogenous pooling 

delineation for flood frequency analysis using a 

fuzzy expert system with genetic enhancement", 
Journal of Hydrology, pp. 291, 132.-149. 

Sokal, R.R., and Rohlf, F.J. (1962). "The comparison 

of dendrograms by objective methods". Taxon, 11, 

pp. 33–40. 

Wagner, T., Sivapalan, M.,  Troch, P., and Woods, R.. 

(2007). "Catchment classification and hydrologic 
similarity", Geography Compass, 1(4), pp. 901-931, 

doi: 10.1111/j.1749-8198.2007.00039.x. 

Ward, Jr., J.H. (1963). "Hierarchical grouping to 
optimize an objective function". Journal of 

American Statistical Association, 58, pp. 236-244. 

Wilshire, S.E.  (1986).  "Regional flood frequency 

analysis. II. Multivariate classification of drainage 

basins in Britain", Hydrological Sciences Journal, 

31(3), pp. 335-346. 


