مدل مدیریت مخازن آبی با استفاده از تئوری بازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد/ بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، ایران

2 استادیار/ بخش مناطق بیابانی، دانشکده کشاورزی، دانشگاه شیراز، ایران

3 دانشیار/ بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، ایران

چکیده

افزایش تقاضای استفاده از آب باعث افزایش رقابت بر سر منابع محدود آب گردیده است. مدل‌های بهینه‌سازی موجود نیز قادر به ارائه راه حلی برای این مسائل نیستند. در سال‌های اخیر به منظور اعمال یک مدیریت کارآتر که رقابت در مصرف را در نظر بگیرد، تعداد محدودی مدل‌های بازی پویای تصادفی گسسته ارائه گردیده‌اند. این مدل‌ها عمدتاً مدیریت توزیع آب منطقی و کارا را ارائه می‌دهند، اما عملیات محاسباتی پیچیده و حجیمی دارند. از جمله خصوصیاتی که باعث بروز چنین مشکلاتی شده است، ماهیت گسسته‌ این مدل‌ها می‌باشد. در این تحقیق، مسئله مدیریت و تقسیم آب در قالب یک مدل بازی پویای قطعی پیوسته برای مدیریت مصرف آب در شرایط وجود اختلاف ارائه می‌شود. توابع سود آنی، بلند مدت و همچنین معادله انتقال حالت در مدل پیشنهادی به صورت پیوسته و با استفاده از توابع ریاضی بیان می‌شود که این موارد باعث کاهش در حجم محاسبات می‌گردد. همچنین برای حل مدل بازی پویای پیوسته پیشنهادی، از معادلات ریکاتی استفاده می‌شود. مدل پیوسته مذکور، در حوزه پایین دست سد زاینده‌رود مورد استفاده قرار گرفته است که به نتایج مناسبی در مقایسه با نتایج مدل بهینه‌سازی پویا دست یافته است. 

 

کلیدواژه‌ها


عنوان مقاله [English]

A Model for Reservoir Operation Based on the Game Theory

نویسندگان [English]

  • M Homayounfar 1
  • A Ganji 2
  • D Khalili 3
  • A.A Mousavi 3
1 Graduate student, Water Engineering Dep., College of Agriculture, Shiraz University, Shiraz, Iran
2 Assistant Professor, Dep. of Desert Region Management, College of Agriculture, Shiraz University, Shiraz, Iran
3 Associate Professor, Water Engineering Dep., College of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Increasing water demands have formed challenges and conflicts over the limited water resources. The existing optimization models have limitations in resolving such conflict problems. In recent years a few discrete stochastic dynamic models have attempted to solve cases of water use (conflicts) so that more efficient water distribution management can be achieved. These models have to some extent addressed the conflict issues of water resources. However, they still do not cover certain constraints, and also require complicated procedures and massive computational efforts. The discrete nature of these models seems to be the limiting factor. In order to resolve these shortcomings, in this research a continuous dynamic deterministic game model is proposed to manage water supply and consumption under challenging conditions. Continuous value functions (long term), utility functions (short terms), and equation of motion are defined in the proposed model. The mathematical equations are formed in a way to decrease the computational time. For this purpose the Ricatti equations are used to solve the proposed continuous stochastic game model. The proposed model is applied to the Zayandeh-rud river basin in central Iran. The results are quite favorable compared to the Dynamic Programming (DP) model outcomes.

کلیدواژه‌ها [English]

  • game theory
  • optimization
  • Reservoir
  • Continuous Dynamic Models

کراچیان، رضا و نجمه مهجوری (1385).، کاربرد یک مدل رفع اختلاف مرحله‌ای در مدیریت کیفی آبخوان تهران،‌ مجموعه مقالات دومین سمینار ساخت و ساز در پایتخت، تهران، ایران.

Batabyal, A. (1996). “Consistency and optimality in dynamic game of pollution control I: competition.” Environmental and Resource Economics, Vol. 8,  pp. 205-220.

Bellman, R. and Dreyfus, S.E. (1962). Applied Dynamic Programming. Princeton: Princeton Univ. Press.

Coppla, E.F., Szidarrovszky, M., Poulton, S. and Roman, E. (2001). "Balancing risk with water supply for a public well field.". Journal Water Resources Planning and Management, ASCE, Vol. 126, No.2, pp. 1-36.

De Marchi, B., Funtowicz, S.O., Cascio, S.L. and Munda, G. (2000). “Combining participative and institutional approach evaluation, an empirical study for water issues in Troina Sicily.” Ecological Economy, Vol. 34, No. 1, pp. 66-77.

Dockner, J.E. and Van Long, N. (1993). “International pollution control: cooperative versus non-cooperative strategies.” Journal of Environmental Economic and Management, Vol. 24, pp. 13-29.

Fundenberg, D. and Tirole, J. (1994). Game Theory. MIT Press.

Ganji A., Karamouz, M. and Khalili, D. (2007b). Development of stochastic conflict resolution models for reservoir operation, II. The value of players’ information availability and cooperative behavior.” Advances in Water Resources. Vol. 30, pp. 157–168.

Ganji A., Khalili, D. and Homayoun-Far, M. (2007c). "Impact of Uncertainty on Risk Indices in Reservoir Operation.", Iran-Water Resources Research, Vol. 2, No. 3, pp. 13-26.

Ganji A., Khalili, D. and Karamouz, M. (2007a). “Development of stochastic conflict resolution models for reservoir operation. I. The perfect symmetric stochastic model. ” Advances in Water Resources. Vol. 30, pp. 528-542.

Gibbons, R. (1992).  Game theory for applied economists. Princeton university press. Princeton, NJ.

Goulter, I.C. and Tai, F.K. (1985). "Practical implications in the use of stochastic dynamic programming for reservoir operations.", Water Resources Bulletin, Vol. 18, pp. 321-344.

Harboe, R. (1992). “Multi-objective design making techniques for reservoir operation.” Monograph  series No. 18, American Water Resources Association, Bethesda, Maryland, pp. 103-110.

Haung, W.C., Harboe, R. and Bogardi, J.J. (1991). "Testing stochastic dynamic programming models conditioned on observed or forecasted inflows." Journal Water Resources Planning and Management, Vol. 117, No. 1, pp. 28-36.

Huang, W.C., Yuan, L.C. and Lee, C.M. (2002). “Linking genetic algorithms with stochastic dynamic programming to long term operation of a multi-reservoir.” Water Resources Research, Vol. 38, No. 12, pp. 401-409.

Johnson, S.A., Stedingar, J.R., Shoemakher, C.A., Li, Y. and Tegada-Guibert, J.A. (1993). “Numerical solution of continuous-state dynamic programs using linear and spline interpolation.” Journal of Operational Research, Vol. 41, No. 3, pp. 484-500.

Karamouz, M. and Vasiliadis, H.V. (1992). “Bayesian stochastic optimization of reservoir operation using uncertain forecast.” Water Resources Research, Vol. 28, No. 5, pp. 1337-1344.

Karamouz, M., Szidarovszky, F. and Zahraie, B. (2003). “Water Resources System Analysis.” Lewis Publishers, Boca Raton, Florida.

Kelman, J., Stedinger, J.R., Cooper, L.A., Hsu, E. and Yung, S.Q. (1990). “Sampling stochastic dynamic programming applied to reservoir operation.” Water Resources Research, Vol. 26, No. 3, pp. 447-454.

Kerachian, R., Karamouz M. (2007). “A stochastic conflict resolution model for water quality management in reservoir–river systems. Advances in Water Resources, Vol. 30, pp. 866–882.

Ko, S., D.G. Fontane and J.W. Labadie. (1992). “Multi-objective optimization of reservoir system operation. Multiple objective decision making in water resources.” Monograph Series No. 18, American Water Resources Association, Bethesda, Maryland, pp. 111-128.

Ligon, E. and Narain, U. (1997). “Computing the equilibria of dynamic common property games.” Natural Resources Modeling. Vol. 10, No. 4. pp. 345-369.

Longanda, G.V. and Bhattacharya, D. (1990). “Goal programming techniques for optimal reservoir operation.” Journal of Water Resources Planning and Management, ASCE, Vol. 11, No. 6, pp. 820-838.

Martin, E.W., Patrick, R.H. and Tolwinski, B. (1993). “A dynamic game of a transboundary pollutant with asymmetric players.”Journal of Envirommental Economics Management, Vol. 24, pp. 1-12.

Miranda, M.J. and Fackler, P.L. (2002). Applied Computational Economics and Finance. MIT press. 

Mousavi, S.J., and Ramamurthy, A.S. (2000). “Optimal design of multi-reservoir systems for water supply.” Advances in Water Resources, Vol. 23, No. 6, pp. 613-624.

Neelakantam, T.R. and Pundarikanthan, N.V. (2000). “Neural network based simulation operation model for reservoir operation.” Journal Water Resources Planning and Management, ASCE, Vol. 126, No. 2, pp. 57-64.

Negri, D.H. (1989). “The common property aquifer as a differential game.” Water Resources Research, Vol. 25, No. 1, pp. 9-15. 

Negri, D.H. (1990). “Strategy of the commons.” Natural Resources Modeling, Vol. 4, No. 4, pp. 521-537.

Palmer, R.N., Ryu, J., Jeong, S. and Kim, Y.O. (2002). “An application on water conflict resolution in the Kum river basin, Korea.” Proceedings of ASCE Environmental an Water Resources, Institutions, Virginia, pp. 19-21. 

Petit, M. L. (1990). Control theory and dynamic games in economic policy analysis. Cambridge University Press, Combridge.

Selten, R. (1975). "Reexamination of  perfectness concept for equilibrium points in extensive game." International Journal of  Game Theory, Vol. 4, pp. 25-55.

 

Shahidehpour, M., Yamin, H. and Li, Z. (2001). Marcet operations in electric power systems. John Wiley and Sons, NY, pp. 191-232.

Shiau, J.T. and Lee, H.C. (2005). "Derivation of optimal hedging rules for a water-supply reservoir through compromise programming." Water Resources Management, Vol. 19, No. 2, pp. 111-132.

Simonovic, S.V. (1991). “Coping with changing objectives managing an existing multipurpose reservoir.” Hydrology of Natural and Manmade Lakes, pub. No. 206, International Association of Hydrologic Science, Walingford, U.K., pp. 181-189.

Szidarovszky, F., L. Duckstein and I. Bogardi. (1984). “Multi-objective management of mining under water hazard by game theory.” European Journal of Operational Research, Vol. 15, pp.251-258.

Yeh, W.W.G. (1985). “Reservoir management and operations models: a state of the art review.” Water Resources Research, Vol. 21, No. 12, pp. 1797-1818.