تخصیص بهینه بار آلودگی چند هدفه با استفاده از الگوریتم چند جامعه‌ای مورچه‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ عمران آب، دانشگاه علم و صنعت ایران

2 استاد /دانشکده عمران، دانشگاه علم و صنعت ایران

3 دانشجوی دکتری /عمران آب، دانشگاه علم و صنعت ایران

چکیده

این مقاله قابلیت الگوریتم چند جامعه‌ای مورچه‌ها را در حل مسائل بهینه‌سازی چند هدفه تخصیص بار آلودگی مورد بررسی قرار داده است. در این تحقیق از سه مدل مختلف برای به دست آوردن جواب‌های غالب1 استفاده شده است. دو مدل به صورت دو هدفه بوده و مدل سوم بصورت سه هدفه تعریف شده است. در مدل اول حداقل‌سازی هزینه و مقدار تخطی از میزان اکسیژن محلول مجاز در طول مسیر رودخانه و در مدل دوم حداقل‌سازی هزینه و مقدار شاخص بی‌عدالتی2 به عنوان اهداف طرح تعریف شده‌اند. در مدل سوم در قالب حداقل‌سازی هزینه، شاخص بی‌عدالتی و تخطی از میزان اکسیژن محلول مجاز به عنوان اهداف مربوطه بررسی شده‌است. خروجی تمامی مدل‌ها منجر به ایجاد منحنی مصالحه شده است، که بر اساس آنها تصمیم‌‌گیرنده قابلیت انتخاب جواب‌های بهینه مختلف را خواهد داشت. مدل‌های تعریف شده بر روی رودخانه ویلمیت3 در ایالات متحده پیاده شده‌اند. نتایج بدست آمده در قالب منحنی‌های مصالحه مورد بحث قرار گرفته است. تحقیق حاضر توانایی الگوریتم چند جامعه‌ای مورچه‌ها را در مسائل تخصیص بار آلودگی نشان می‌دهد. با توجه به دلخواه بودن مقادیر گسسته‌سازی4 در ابتدای طرح، می‌توان مقادیری از تصفیه را که عملی بوده و قابلیت اجرایی دارند، در نظر گرفت. این خاصیت الگوریتم کلونی مورچه‌ها باعث شده است که خروجی مدل‌ها در راستای فضای اجرایی تحت کنترل باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Multiobjective Waste Load Allocation Using Multicolony Ant Algorithm

نویسندگان [English]

  • H Hosseinzadeh 1
  • A Afshar 2
  • F Sharifi 3
1 PhD student, Civil and Environmental Dep., Iran University of Science and Technology, Tehran, Iran
2 Professor, Civil and Environmental Dep., Iran University of Science and Technology, Tehran, Iran
3 PhD student, Civil and Environmental Dep., Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this research, the capability of a multicolony Ant Colony Optimization algorithm is applied to multiobjective waste load allocation problem. In order to derive nondominated solutions, three different models are used. Two of them are biobjective and the remaining one is a three-objective model. In the first model, minimization of cost and DO violation along the stream flow is considered as multi objective optimization problem, while for the second case, minimization of the cost and equity is investigated. For the third optimization problem, minimization of cost along with equity and DO violation are considered. For the all case studies, the Pareto front is derived which enhances the decision maker to choose one which more suitable for him/her according to the priorities. The case study is the Wilmate river in Oregon State of US. The following research shows the capability of NA-ACO in multiobjective optimization of waste load allocation problem. According to the discrete pattern of decision variables in the ACO algorithm, it can be easily map to practical waste load allocation problems

کلیدواژه‌ها [English]

  • Multicolony Ant
  • Trade off Curve
  • Multiobjective Optimization
  • Waste Load Allocation

Afshar, A., Kaveh, A. and Shoghli, O.R. (2007), “Multi-Objective Optimization of Time-Cost-Quality Using Multi-Colony Ant Algorithm” Asian Journal of Civil Engineering (Building and Housing). 8(2), pp. 149-160.

Afshar, A., Sharifi, F. and Jalali, M. R. (2008), ‘‘Nondominated ARCHRIVING Multicoloni and Ant Algorithm for Multi Objective Optimization; Application to Multi propose Reservoir Operation”, journal of Engineering Optimization. 41(4), pp. 313-325 (13).

Baran, B. and Schaerer, M. (2003), ‘‘A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows”, Twenty first IASTED International Conference on Applied Informatics, Insbruck, Austria, February 10-13, pp. 97-102.

Burn, D. H. and McBean, E. A. (1985), ‘‘Optimization modeling of water quality in an uncertain environment’’, Water Resour. Res., 21(7), pp. 934-940.

Burn, D. H. and Yulianti, J. S. (2001), “Waste-load allocation using genetic algorithms”, J. Water Resour. Plan. Manage., 127(2), pp. 121–129.

Cardwell, H. and Ellis, J. H. (1993), ‘‘Stochastic dynamic programming models for water quality management.’’, Water Resour. Res., 29(4), pp. 803–813.

Chen, H. W. and Chang, N.B. (1998), ‘‘Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling.’’ Water Sci. and Technol., 37(3), pp. 55-63.

Deb, K.,  Pratap, A., Agarwal, S. and Meyarivan, T. (2002), “A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II” IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 6(2), pp. 182-197.

Doerner, K., Gutjahr, W.J.,  Hartl, R.F., Strauss, C. and Stummer, C. (2004), ‘‘Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection, Annals of Operations Research, 131, pp. 79-99.

Dorfman, R., Jacoby, H. D. and Thomas, H. A., Jr. (1972), “Models for managing regional water quality”, Harvard University Press, Cambridge, Mass.

Ellis, J. H. (1987), ‘‘Stochastic water quality optimization using imbedded chance constraints’’, Water Resour. Res., 23(12), pp. 2227–2238.

Fujiwara, O., Gnanendran, S. K. and Ohgaki, S. (1986), ‘‘River quality management under stochastic streamflow’’ J. Envir. Engrg., ASCE, 112(2), pp. 185–198.

Iredi, S. D. and Middendrof M. (2001), “Bi-Criterion Optimization with multi colony ant algorithms”, in: Proceeding of the First international Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, Springer, Berlin.

Loucks, D. P., ReVelle, C. S. and Lynn, W. R. (1967), ‘‘Linear programming models for water pollution control’’, Mgmt. Sci., 14(4), B-166–B-181.

Mariano, C. E. and Morales, E. (2002), ‘‘A Multiple Objective Ant-Q Algorithm for the Design of Water

 

      Distribution Irrigation Networks”, instituto Mexicano de Tecnologia del Agua, Mexico.

Sasikumar, K. and Mujumdar, P. P. (1998). ‘‘Fuzzy optimization model for water quality management of river system’’ J. Water Resour. Plng. and Mgmt., ASCE, 124(2), pp. 79–84.

Takyi, A. K. and Lence, B. J. (1999). ‘‘Surface water quality management using a multiple-realization chance constraint method’’, Water Resour. Res., 35(5), pp. 1657–1670.

Wang, X. L. and M. Mahfouf, (2004), ‘‘ACSAMO: An Adaptive Multiobjective Optimization Algorithm using the Clonal Selection Principle”, The Lanzhou University of Technology, Lanzhou, 730050, China

Yandamuri, S. R., Srinivasan, K. and Bhallamudi, M. S. (2006), “Multiobjective Optimal Waste Load Allocation Models for Rivers Using Nondominated Sorting Genetic Algorithm-II” J. Water Resour. Plan. Manage., 132(3), pp. 133–143.