تخمین و بازسازی داده‌های بارندگی با تکنیک فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار /گروه مهندسی آب دانشگاه فردوسی مشهد

2 استادیار/ گروه مهندسی آب دانشگاه فردوسی مشهد

چکیده

منطق فازی به عنوان یک ابزار انعطاف‌پذیر که قابلیت استفاده در بسیاری از سامانه‌ها را دارد، جهت ارائه و توسعه یک تکنیک جدید برای تخمین و بازسازی داده‌های بارندگی بکار گرفته شده است. تکنیک مبتنی بر منطق فازی، بارندگی هر نقطه را با توجه به داده‌های موجود در ایستگاه‌های هواشناسی مجاور  و درجه تأثیر ایستگاه‌ها بر مبنای تغییر طول و عرض جغرافیایی و ارتفاع  تخمین می‌زند. این کار با ارائه دو تابع عضویت فازی اختلاف فاصله و ارتفاع انجام شد. هرکدام از این توابع خود ترکیبی از چهار مجموعه فازی با اشکال مثلثی و ذوزنقه‌ای با همپوشانی جزئی بوده، که منجر به ایجاد 16 قانون فازی گردید. برای محاسبه وزن و ضریب هر ایستگاه نیز حداقل 2 و حداکثر 4 قانون فعال ‌شد. این تکنیک با استفاده از 48 ایستگاه‌ هواشناسی در کل استان خراسان بزرگ آزمون شده و نتایج حاصل از آن با روش عکس‌ فاصله و روش میانگین‌گیری مقایسه گردید. نتایج حاصله حداقل خطا را برای تکنیک فازی بدست داد. به طوریکه متوسط خطای مطلق و انحراف نتایج مدل در تکنیک فازی کمتر از دو روش دیگر و روش عکس فاصله کمتر از روش میانگین‌گیری می‌باشد. همچنین تأثیر تعداد ایستگاه‌ها بر نتایج روش‌های مختلف مورد بررسی قرار گرفت، که نهایتاً استفاده از چهار ایستگاه، بهترین نتایج را در مدل فازی بدست داد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating Precipitation Data Using a Fuzzy-based Technique

نویسندگان [English]

  • H Ansari 1
  • K Davary 2
1 Assistant Professor Water Engineering Department, Ferdowsi University of Mashhad
2 Assistant Professor Water Engineering Department, Ferdowsi University of Mashhad
چکیده [English]

As a flexible tool that may be adapted to many systems, fuzzy logic was employed to develop a new technique for estimation of precipitation data. This fuzzy-based technique estimates precipitation for any point upon available data from the neighboring meteorological stations. The contributions of each station is weighed due to its differential longitudes, latitudes, and altitudes with respect to the point of interest. This was accomplished through two membership functions for distance and elevation. Each of these functions are composed of four fuzzy sets (triangular and trapezoidal shapes with partial overlaps), which in turn led to sixteen fuzzy rules. Computing weights for each station activates a minimum of two and a maximum of four rules. The technique was tested for Khorasan province in eastern Iran using the data from 48 meteorological stations. Finally, the results from the fuzzy-based technique are compared with the results of two other commonly used methods, namely simple average and inversed-distance. The results generally showed the minimum error for fuzzy technique. The minimum mean-absolute-error and the model deviation of the estimated values were found for the fuzzy-based technique. Inversed-distance and simple average methods showed higher values for these parameters. The role of the number of stations involved in the estimation process was also discussed. The optimal number of stations are found to be four.

کلیدواژه‌ها [English]

  • fuzzy model
  • Fuzzy rules
  • Precipitation data
  • Average method
  • Inversed-distance method

Bankert, R., Hadjimichael, M. and Hansen, B. (2001), "Fuzzy Logic in Environmental Sciences". http://www.chebucto.ns.ca/Science/AIMET/fuzzy_environment/.

Bardossy, A., and Duckstein, L. (1995), Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems. CRC press Inc, Boca Raton, Florida, USA.

Bardossy, A., Bogardi, I., and Duckstein, L. (1990a), "Fuzzy regression in hydrology". Water Resources Research, 26(7), pp. 1497–1508.

Bardossy, A., Bronstert, A., and Merz, B. (1995), "1, 2 and 3Dimensional Modeling of Water Movement in the Unsaturated Soil Matrix Using a Fuzzy Approach". Adv. Wat. Resour., 18, pp. 237-251.

Casti, J., (1990), "Search for Certainty". http://www.fuzzy-logic.com

Casti, J., (1993), Reality Rules I, II. New York: John Wiley and Sons Inc., USA.

Casti, J., Kempf, J., Duckstein, L., and Fogel, M. (1979), "Lake Ecosystems: A Polyhedral Dynamics Representation". Journal Ecological Modeling, 7, pp. 223 – 237.

 Coa, Z., and Kandel, A. (1989), "Applicability of  Some Fuzzy Implication Operators". FSS., 3, pp.42-52.

Duckstein, L., and Parent, E. (1994), "Systems Engineering of Natural Resources under Changing Physical Conditions: a Framework for Reliability and Risk". In: Proc. Natural Resources Management, Duckstein and Parrent(eds), Dordreche: Kluwer Nijhoff Publishing, The Netherlands.

Fontane, D.G., Timothy, K.G., and Moncado, E. (1997), "Planning Reservoir Operations with Imprecise Objectives". Journal of Wat. Resour. Planning and Management,  ASCE, 123, pp.154-162.

Lee, C.C. (1990), "Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I & II". TEEE Transaction on Systems, Man, and Cybernetics March | April.

Pongracz, R., Bogardi, L., and Duckstein, L. (1999), "Application of Fuzzy Rule-Based Modeling to Regional Drought". Journal of Hydrology, 224, pp.100-114.

Salaski, A. (2002), "Ecological Applications of Fuzzy Logic". In: F. Recknagel (ed): Ecological Informatics. Springer, 2002, pp. 3-14.

Zimmermann, H.J., (1985), Fuzzy Set Theory and its Application. Dordrecht: Kluwer Nijhoff Publishing, Publishing, Hingham, Mass.