کاربرد آنالیزهای چند متغیره، اندیس‌های اشباع و دیاگرام‌های ترکیبی در تحلیل کیفی آبخوان آبرفتی دشت کرمان

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار /گروه زمین‌شناسی دانشگاه تربیت معلم تهران، تهران، ایران

چکیده

خصوصیات شیمیایی آبخوان آب زیرزمینی دشت کرمان مورد مطالعه قرار گرفته و از نتایج آزمایشات فیزیکی و شیمیایی مربوط به 58 حلقه چاه عمیق استفاده گردیده است. در این نمونه‌ها خصوصیات فیزیکی و شیمیایی و یون‌های اصلی (Na+, K+, Ca++, Mg++, Cl-, SO4- -, HCO3-) مورد سنجش قرار گرفته‌اند. روشهای مختلف شامل دیاگرام‌های ترکیبی، اندیس‌های اشباع و آنالیزهای چند متغیره در ارزیابی پارامترهای کیفی استفاده شده است. نتایج نشان داده‌‌اند که رخساره هیدروشیمیایی غالب (Na, K–Cl, SO4) در ٧٣ درصد از نمونه‌ها می‌باشد. اندیس اشباع از کلسیت، دولومیت، ژیپس و آراگونیت محاسبه و نشان دهنده وضعیت فوق اشباع نسبت به کلسیت و دولومیت می‌باشد. تحلیل خوشه‌ای، منابع آب را در سه گروه مجزا قرار می‌دهد که منطبق با زمان ماندگاری آب و میزان واکنش با مواد آبخوان از هم مجزا می‌شوند. نتایج تحلیل عاملی نشان می‌دهد که 3/96 درصد از تغییرات کیفی آب توسط 5 عامل کنترل می‌شود. عامل اول و مهمترین عامل، انحلال هالیت موجود در آبرفتهای دشت کرمان است. انحلال ژیپس که کماکان در آبخوان اتفاق می‌افتد، در درجه دوم اهمیت قرار دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Statistical Methods, Saturation Indices, and the Composite Diagrams in the Groundwater Quality Assessment in the Kerman Plain Aquifer

نویسنده [English]

  • M Rezaei
Assistant Prof. Geology department of Tarbiat Moallem University, Tehran, Iran
چکیده [English]

The hydrogeochemical characterization of the Kerman plain aquifer, in central Iran, has been studied. Chemical characteristics from 58 deep well samples were used. Physicochemical characteristics and the major elements (Na+, K+, Ca++, Mg++, Cl-, SO4- - and HCO3-) were analyzed for these samples. Different methods including composite diagrams, saturation indices, and multivariate statistical methods were employed to assess groundwater quality. The results showed that the main hydrochemical facies of the aquifer representing 73% of the samples samples are (Na, K–Cl, SO4). The solubility of Calcite, Dolomite, Gypsum, and Aragonite were assessed in terms of the saturation index indicating supersaturation with respect to Calcite and Dolomite. Clustering analysis showed three distinctive groundwater groups indicating different groundwater residence time and different rock-water interaction history. The results of factor analysis indicated that five factors explain about 96.3% of the total sample variance. The first and most important factor is mainly controlled by Halite dissolution in the Kerman plain. Dissolution of Gypsum is the second most important source of salinity.

 

کلیدواژه‌ها [English]

  • Groundwater
  • multivariate analysis
  • Hydrogeo-chemistry
  • saturation index
Back, W. (1966), Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. U.S. Geological Survey Professional Paper 498-A

Beatriz, A.H., Vega, M., Barrado, E., Pardo, R. and Fernandez, L. (1998), A case study of hydrochemical characteristics of an alluvium aquifer influenced by human activities, Air, water and Soil pollution Bulletin.

Cloutier, V. (2004), Origin and geochemical evolution of groundwater in the Paleozoic Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. PhD Thesis, INRS-Eau, Terre & Environnement, Québec, Canada [in French and English]

Dalton, M.G. and Upchurch, S.B. (1978), Interpretation of hydrochemical facies by factor analysis, Groundwater, V. 16, pp. 228-233

Dawdy, D.R., Feth, J.H. (1967), Application of factor analysis in steady of chemistry of groundwater quality, Mojaveriver Vally, California, Water Resour. Res.3(2), pp. 505-510.

Freeze, R.A. and Cherry, J.A. (1979), Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Gosselin, D.C., Harvey, F.E. and Frost, C.D. (2001), Geochemical evolution of ground water in the Great Plains aquifer of Nebraska: Implications for the management of a regional aquifer system. GroundWater 39(1): pp. 98–108.

Hem, J.D. (1985), Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper 2254, Third Edition.

Hendry, M.J. and Schwartz, F.W. (1990), The chemical evolution of ground water in the Milk River Aquifer, Canada. Ground Water 28(2): pp. 253–261.

Hitchon, B., Billing, G.K. and Kolvan, J.E. (1971), Geochemistry and origin of formation waters in the western Canada sedimentary basin, III. Factor controlling chemical composition, Geochem. Cosmochem. Acta, 35, pp. 567-598.

Jankowski, J., Shekarforosh, S. and Acworth, R.I. (1998), Reverse ion exchange in a deeply weathered prophyritic dacit fractured aquifer system, Yass, New South Wales, Australia, In Arehord G.B. & Hulston R. (eds.) Proceeding of 9th International Symposium on Water Rock Interaction, Taupo, New Zealand, Rotterdam: Balkema, pp. 243-246.

Jeong, C. (2001), Mineral-water interaction and hydrogeochemistry in the Samkwang mine area, Korea. Geochemical Journal, Vol. 35, pp. 1-12

Ken W. F. Howard. and Mullings, E. (1996), Hydrochemical Analysis of Ground-Water Flow and Saline Incursion in the Clarendon Basin, Jamaica, Groundwater, 34(6), pp. 801-810.

Lawrence, F.W. and Upchurch, S.B. (1982), Identification of water recharge areas using geochemical factor analysis, Groundwater, 20(6), pp. 680-687.

Liu, C.W., Lin, K.H. and Kuo, Y.M. (2003), Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan, The Science of Total Environment, V.313, pp.77-89.

Marie, A. and Vengosh, A. (2001), Sources of salinity in groundwater from Jericho area, Jordan Vally, Grounwater, 39(2), pp. 240-248.

Nordstrom, D. K., Ball, J.W., Donahoe, R.J. and Whittemore, D. (1989), Groundwater chemistry and water-rock interaction at Stripa. Geochem. Cosmochem. Acta. 53, pp. 1727-1740.

Parkhurst, D.L., Appelo, C.A.J. (1999), User's guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99–4259

Piper, A.M. (1944), A graphic procedure in the geochemical interpretation of water-analyses. American Geophysical Union. Papers, Hydrology, pp. 914–923

Reghunath, R., Murthy, T.R.S. and Raghvan, B.R. (2002), The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India, Water Research, Vol. 36., pp. 2437-2442.

Stober, I. and Bucher, K. (1999), Deep groundwater in the crystalline basement of the Balck Forest region, Applied Geochemistry, 14, pp. 237-254.

Subbarao, C., Subbarao, N.V.  and Chandu, S.N. (1996), Characterization of groundwater contamination using factor analysis, Environmental Geology, V.28 No. 4, pp. 175-180.

Usunoff, E.J. and Guzman-Guzman, A. (1989), Multivariate analysis in hydrochemistry: An example of the use factor and correspondence analysis. Groundwater, 27, pp. 27-34.