پیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد/ سازه های آبی، دانشگاه تربیت مدرس، تهران

2 دانشیار گروه سازه های آبی ، دانشگاه تربیت مدرس، تهران

3 کارشناس ارشد/ عمران آب، وزارت نیرو، تهران

چکیده

یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدل‌سازی سیستم‌هایی که دارای پیجیدگی زیاد یا عدم‌  صراحت بوده و یا داده‌های کافی از آنها موجود نیست، استفاده از تئوری مجموعه‌های فازی از جمله سیستم می‌باشد. مزیت اصلی این تکنیک نسبت به  استنتاج فازی روش‌های رایج، این است که این سیستم بر اساس قواعد اگر- آن‌گاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبور می‌باشد. در تحقیق حاضر نیز، با استفاده از سیستم استنتاج فازی و بر اساس دبی، درجه حرارت و بارش ماهانه، سری پیوسته‌ای از دبی جریان رودخانه و هر یک از متغیرهای مذکور تشکیل و تاثیر هریک از متغیرهای فوق در توالی‌های زمانی گذشته بر روی میزان دبی جریان رودخانه در ماه‌های آینده بررسی شد و میزان دبی رودخانه در ماه‌های آینده پیش‌بینی شد.

کلیدواژه‌ها


عنوان مقاله [English]

River Flow Forecasting using Fuzzy Inference System

نویسندگان [English]

  • N Poustizadeh 1
  • J M. V. Samani 2
  • A K. Dezfuli 3
1 M.Sc. Water Structures, Tarbiat Modares University, Tehran, Iran
2 Associ. Professor of Water Resources department, Tarbiat Modares University, Tehran, Iran.
3 M.Sc., Environment and Water Research Center, Ministry of Energy, Tehran, Iran
چکیده [English]

The Fuzzy Sets Theory has recently been widely and successfully used in engineering problems with complexity, ambiguity, or lack of enough data. The Fuzzy Inference System (FIS) is among these techniques. The main advantage of this technique over traditional methods is that it works based on IF-THEN rules and appoints the relation between input and output variables accordingly. In this study the monthly discharge, temperature, and rainfall are used in the  Fuzzy Inference System context as continuous series in order to forecast the river flow discharge for the next months. The effect of each variable in previous time step is determined on the flow discharge in the upcoming month and the best combination and suitable lag time is obtained. 

کلیدواژه‌ها [English]

  • Forecasting
  • ambiguity
  • River Flow
  • Fuzzy inference system

جمالی، س.، ابریشم­چی، ا. و تجریشی، م. (1385)، "ساخت مدل­های پیش­بینی جریان رودخانه و بهره­برداری از مخزن با استفاده از سیستم استنباط فازی" مقاله دومین کنفرانس مدیریت منابع آب ایران.

عراقی­نژاد، ش. و کارآموز، م. (1384)، "پیش­بینی بلندمدت رواناب با استفاده از شبکه‌های عصبی مصنوعی و سیستم استنتاج فازی" مجله تحقیقات منابع آب ایران، شماره 2، صفحه 29-41.               

وانگ، لی. (1378)، "سیستم­های فازی و کنترل فازی" ترجمه محمد تشنه لب، نیما صفارپور؛ داریوش افیونی. انتشارات دانشگاه خواجه نصیر طوسی.    

Araghinejad, S., Burn, D.H., and Karamouz, M. (2006), “Long-Leadprobabilistic forecasting of stream flow using ocean-atmospheric and hydrological predictors”. Water Resources Research, Vol. 42, WO3431.    

Bardossy, A (1995). Fuzzy Rule-Based Modeling with Application to Geophysical, Biological and Engineering Systems, CRC and Boca Raton, Fla.

Chang, L., Chang, F. and Tsai, Y.(2005), Fuzzy  exemplar-based inference system for floodforecasting, Water Resources  Research, Vol.41, Issue 2, pp.1-20

Mamdani, E. H. (1976), Advances in linguistic synthesizes of fuzzy controllers, J. Man mach. Stud., vol. 8, pp. 669-678.

Ross, T.J., (1995), Fuzzy Logic with Engineering Applications, McGraw-Hill, Inc., USA.

Shan Yu, P. and Tsung Chen, Sh. (2005),  Updating Real-Time Flood Forecasting Using a Fuzzy Rule-Based Model, Vol.50,Issue 2, pp.265-278   

Swain, P.C. and Nanduri, U.V. (2005),  Streamflow Forecasting using Neuro-Fuzzy Inference System, Advances in Water Resources, Vol.32, Issue 2, pp.1-14