تحلیل سیستمی آسیب پذیری دشت سیستان به کاهش منابع آب - ارائه ی گزینه های سیاستی با رویکرد برگشت پذیری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری /مهندسی منابع آب دانشگاه تربیت مدرس

2 استادیار /گروه مهندسی منابع آب دانشگاه تربیت مدرس

چکیده

دشت سیستان واقع در حوضه آبریز رودخانه هیرمند به عنوان تنها منبع آب موثر در این دشت، از وابسته‌ترین نواحی کشور به منابع آب‌های مرزی است. علی‌رغم مطالعات انجام شده به منظور تقویت مدیریت منابع آب در این محدوده، بخصوص با رویکرد تامین آب، مشاهدات حاکی از  ناپایداری  این ناحیه و آسیب‌پذیری شدید در اثر نوسانات آورد رودخانه هیرمند است. به منظور تحلیل آسیب‌پذیری دشت سیستان به کاهش منابع آب، مقاله پیش‌رو چارچوب آسیب‌پذیری فوزل را به کار می‌گیرد. بر اساس چارچوب مزبور ابتدا مشخصه‌های نگرانی باید مشخص شوند.  بدین ترتیب متغیرهای سرانه تولید ناخالص داخلی دشت سیستان و جمعیت ساکن در آن را معرف مؤلفه اقتصادی- اجتماعی  و حجم آب تالاب هامون را به عنوان مؤلفه بیوفیزیکی سیستم آسیب‌پذیر در نظر می‌گیرد. سپس  به منظور کاهش آسیب‌پذیری سیستم تحت مطالعه، رویکرد برگشت‌پذیری گذار را، که با تغییرات خودسازمان‌یافته دشت سیستان قابل انطباق است، پیشنهاد می‌دهد. این ناحیه به سوی افزایش سازگاری در برابر کاهش منابع آب از طریق کاهش فعالیت کشاورزی و جایگزینی آن با مشاغل کمتر وابسته به آب ولی در عین حال سازگار با ملاحظات امنیتی، در حال حرکت است. در این راستا، و به دنبال برگرداندن سطح رفاه اقتصادی به دشت سیستان در شرایط کم آبی، تحقیق پیش‌رو به دنبال آنست که چگونه می‌توان ساختار اقتصاد محلی را به گونه‌ای تغییرداد که سطح رفاه به وضعیت پرآبی برگردد. بدین ترتیب با اجرای یک مدل سیستم دینامیکی تحت دو مقدار حدی بالا و پایین از آورد سالانه رودخانه هیرمند به دشت سیستان، 3000 تا 5000 میلیون مترمکعب، پنج سطح از مقادیر مشخصه‌های نگرانی، تحت ساختار آسیب‌پذیری سابق، به عنوان سطوح برگشت‌پذیری مرجع تعریف شد. با اجرای مدل تحت پنج آورد منتسب به سطوح برگشت‌پذیری مرجع تا سال 1430 مقادیر مشخصه‌های نگرانی هریک از سطوح مشخص گردید. سپس با در نظر گرفتن عدد 700 میلیون مترمکعب (متوسط مقادیر آورد کمتر از میانگین مشاهداتی آورد رودخانه هیرمند به دشت سیستان (بین سال‌های 1971 تا 2001) به عنوان مقدار بحرانی ، و اجرای مدل تحت آن مقدار  به همراه تغییر پارامترهای ساختار آسیب‌پذیری، مقادیر متناظر میزان بهره‌وری آب مورد نیاز و سقف آب مصرفی در دشت سیستان برای رساندن مقادیر مشخصه‌های نگرانی به مقادیر آنها در هریک از سطوح برگشت‌پذیری مرجع، تحت عنوان گزینه سیاستی با رویکرد برگشت‌پذیری ارائه شد. نتایج حاکی از آن است که گزینه سیاستی توانایی نسبتا بالایی در رساندن دو مشخصه نگرانی جمعیت ساکن و متوسط سالانه سرانه تولید ناخالص داخلی در دشت سیستان تحت مخاطره کم آبی به مقادیر متناظر آنها در هریک از سطوح مرجع پنجگانه دارد. به نحوی که با افزایش بهره‌وری متوسط آب در منطقه به میزان 56000 ریال (به قیمت پایه سال 1390) به ازای هر مترمکعب آب و محدود کردن سقف تخصیص سالانه‌ی آب به کاربری‌های اقتصادی به میزان 240 میلیون مترمکعب، می‌توان به اسکان جمعیت 1 میلیون نفر با متوسط سالانه سرانه تولید ناخالص داخلی 16 میلیون ریال (به قیمت پایه سال 1390) به ازای هر نفر تا سال 1430 امیدوار بود. اما نتایج مربوط به متوسط سالانه حجم آب دریاچه هامون حکایت از آن دارد که حجم آب این دریاچه قابل برگشت به حالت پرآبی نخواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Systemic Analysis of Vulnerability of the Sistan Plain to Water Scarcity - Experiencing Policy Options Based on the Resilience Approach

نویسندگان [English]

  • M.R. Shahbazbegian 1
  • A. Bagheri 2
1 PhD. Student, Department of Water Resources Engineering, Tarbiat Modares University, Tehran, Iran
2 Assistant Professor,Department of Water Resources Engineering, Tarbiat Modarres University, Tehran, Iran
چکیده [English]

 
Sistan plain is located in Hirmand River delta which is the only source of water for the plain. The plain has therefore the highest level of dependency on transboundary water resources in national scale. In spite of many studies – mostly focusing on supply side management practices - the observations are implying unsustainability and vulnerability of the area to the Hirmand river discharge variations. Analyzing the Sistan plain vulnerability to water scarcity, the paper adopts the vulnerability framework developed by Fussel. To apply the framework, the system attributes of concern in terms of socio-economic and biophysical features need to be determined. Thus, the value added and total population were considered to represent the socio-economic features of the vulnerable system and the water reservoir associated to Lake Hamoun was considered as the biophysical feature. Then, in order to reduce the system vulnerability to water scarcity, this study suggested applying the theory of transition resilience which is in line with the real local conditions towards self-organized changes in the area. The economic local condition is transforming from purely agricultural towards activities with less dependency on water which is, somehow, an adaptation to the water scarcity conditions. In this way, the paper seeked for economic changes to bring the local welfare in the water scarcity conditions back to that associated to the water abundant conditions. Therefore, five resilience levels have been defined as the reference levels for the system associated to the input annual water discharge to the area between 3000 to 5000 MCM. A system dymamic model was applied to determine the values associated to the system attributes of concern according to the five levels of the system resilience until 2050. Then, necessary changes were introduced to the system to satisfy the reference resilience levels under the condition that the river annual input discharge would decrease to 700 MCM (90 percent of Iran’s water right from Hirmand River). The values of local water productivity and also the total volume of allocated water to economic uses necessary to satisfy the reference resilience levels were represented in terms of two curves. For instance, to bring the system into an equilibrium condition the model outputs suggested that increasing water productivity to 56000 Rial per Cubic meter (according to the base price of 2011) with 240 MCM of maximum water volume supplly will lead to residence of 1 million inhabitants with 16 million IRR annual income per capita (according to the base price of 2011) till 2050. However, the water reservoir in Lake Hamoun would never get back to its initial condition.

کلیدواژه‌ها [English]

  • Sistan plain
  • vulnerability
  • Resilience
  • System thinking
  • System dynamics modelling
 

Adger, W.N (2006) Vulnerability. Global Environmental Change 16, 268–281.

Ahmadi M, Derafshi K (2012) Drought impacts on the Sistan region border security between 1998-2010, National Conference on security and border towns, challenges and approaches, Zabol (In Persian).

Baranpour M, Bandariyan A (2012) Joint economic activities and its role in border security (Case study Sistam and Balouchestan province), National Conference on security and border towns, challenges and approaches, Zabol (In Persian).

Bardsley D.K, Wiseman N.D (2012) Climate change vulnerability and social development for remote indigenous communities of South Australia. Global Environmental Change 22(3):713-723.

Bates B, Kundzewicz Z, Wu S, Palutikof J (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva.

Beek E, Bozorgy B, Vekerdy Z, Meijer K (2008) Limits to agricultural growth in the Sistan Closed Inland Delta, Iran. Irrigation and Drainage Systems 22(2), 131-143.

Beikmohammadi H, Noori H (2007) Droughts effects  between 83-1377 on Sistan rural economics and strategies to cope with. Geographics and Development Journal 40, 123-137. (In Persian)

Bezi, K (2008) Look at the environmental and socio-economic effects of the cyclical crises of water in Sistan, First International Conference on Water Crisis, Zabol. (In Persian)

Biazin B, Sterk G (2013) Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agriculture, Ecosystems & Environment 164(0), 100-113.

Blaikie P, Cannon T, Davis I, Wisner B (1994) At Risk: NaturalHazards, People’s Vulnerability and Disasters., Routledge London.

Bouyeh C, Sharifi M (2010) Transit and geopolitical position of Sistan and Baluchestan province and new economic strategy Persian Gulf states, Fourth International Congress of the Islamic World Geographers, Tehran. (In Persian)

Burton I, Huq S, Lim B, Pilifosova O, Schipper E.L (2002) From impact assessment to adaptation priorities: the shaping of adaptation policy. Climate Policy 2, 145-149.

Collin M.L, Melloul A.J (2003) Assessing groundwater vulnerability to pollution to promote sustainable urban and rural development. Journal of Cleaner Production 11(7), 727-736.

Cutter S.L, Barnes L, Bery M, Burton C, Evans E, Tate E, Webb J (2008) A place-based model for understanding community resilience to natural disasters. Global Environmental Change 18, 598-606.

Dahmardeh N,  Aryaie F (2010) Zabol airplan development and the role of entrepreneurship on the Sistan economic development, First international conference on management, innovation and entrepreneurship, Tehran. (In Persian)

Ebrahimzadeh A (2001) Rural migration; Causes and consequences; Case study the Sistan and Balouchesta province. Quarterly of geographical researschs 60, 56-73. (In Persian)

Fussel H (2007) Vulnerability: a generally applicable conceptual frameworke for climate change research. Global Environmental Change 2(17), 155–167.

Gilbert C (1995) Studying disaster: a review of the main conceptual tools. International Journal of Mass Emergencies and Disaster 13, 231-240.

Gloede O, Menkhoff L, Waibel H (2015) Shocks, individual risk attitude, and vulnerability to poverty among rural households in Thailand and Vietnam. World Development 71(0), 54-78.

Haghighatjou P, Behniya A, (2006) Iranian river border problems and proposed solutions Case Study: Helmand River, The first regional conference on optimal utilization of water resources and river basins Shahre Kord (In Persian).

Hybel A.M, Godskesen B, Rygaard M (2015) Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources. Journal of Environmental Management 160, 90-97.

Iran Ministry of Industry (2013) Industry, trade and mines according to the statistics and data, Department of Planning of Iran Ministry of Industry, Mine and Trade (In Persian).

Iran water master plan (2006) Economic report of water master plan studies of the Iran Eastern watersheds, Iran Ministry of Energy (In Persian).

Iran water master plan (2011) Water resources master plan studies of Iran eastern basins, Iran Ministry of Energy. (In Persian).

Iran statistical center (2006) Iran statistical year book, Iran statistical center press (In Persian).

Jalilvand R, Jalilvand J (2010) Evaluation of the environmental problems caused by the drought and its impacts on the local economy of Sistan plain wetland, Fourth Conference of Environmental Engineering, Tehran (In Persian).

Karimi F (2012) Contexts and geographical conditions affecting the realization of sustainable development in the border cities of Sistan and Baluchestan province, National Conference on security and border towns, challenges and approaches, Zabol (In Persian).

Kiyani A, Tafakori A, Yousefi R (2012) An assessment of the social and economic structure of the city of Zabol in terms of attracting tourism, The first national conference on tourism and ecotourism Iran, Tehran (In Persian).

Kwadijk J, Diermanse F (2006) Integrated water resources management for the Sistan closed inland delta, Iran: Forecasting the flow from Afghanistan, Water Research Institute of Hydraulics, WL delf.

Mokhtari D, Salehi A (2007) Analysis of economic and social aspects of drought and its impact on rural households in the Sistan region, Sixth Conference of Agricultural Economics, Tehran (In Persian).

Nakhaei M, Akbari M (2013) Analysis of the economic indicators of the population and the body and face of the city, National Conference of Environmental Research, Tehran (In Persian).

Najafi M (2010) Environmental challenges in international lake Hamun. Bearu of Environmental Protection Journal 45:43-51 (In Persian).

Paroissien J.-B, Darboux F, Couturier A, Devillers B, Mouillot F, Raclot D, Le Bissonnais Y (2015) A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management 150:57-68.

Parvaneh A, Dehghani M (2009) Evaluation of the environmental, social and economic consequences of Sistan plain dieback, caused by disruption of the Helmand river by Afghanistan government and proposed solutions, The Second National Conference on the Effects of Drought and its ManagementP, Isfahan (In Persian).

Pedro-Monzonís M, Solera A, Ferrer J, Estrela T, Paredes-Arquiola J (2015) A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology 527:482-493.

Polsky C, Neff R, Yarnal B (2007) Building comparable global change vulnerability assessments: the vulnerability scoping diagram. Global Environ- mental Change 17:472-485.

Rafieian M, Rezaie M, Asgari A, Shayan S (2010) The concept of resilience and their indicators in the disaster management community. J. Landuse Planning 4:38-28 (In Persian).

Reispour K, Tavousi T, Khosravi M (2008) Drought and its unintended consequence on plant ecosystem of lake Hamun, First national conference on Iran lakes, Ahvaz (In Persian).

Richardson G.P (1991) System dynamics: simulation for policy analysis from a feedback perspective. In Qualitative simulation modeling and analysis, Springer, New York.

Richmond B (1993) Systems thinking: critical thinking skills for the 1990s and beyond. System Dynamics Review 2:113-133.

Rose A (2007) Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards 7:383–398.

Sahraie A, Tahmasbi G (2012) The impact of urban development on security policy with an emphasis on Sistan and Baluchistan province., National Conference on Border Cities and Security, Challenges and Strategies, Zabol (In Persian).

Senge PM (1997) The fifth discipline. Measuring Business Excellence 1(3):46-51.

Shahbazbegian MR, Sadeghi M (2013) System analysis of effective mechanisms on Sistan sustainability versus water deficit emphasizing on land use planning, Fifth National Conference on Water Resources Management, Tehran (In Persian).

Shahverdi D, Kiyani A (2001) Assessment of the relationship between social capital and sustainable development of the local economy using TOPSIS in Zabol, Conferrence of Sustainable Architecture and Urban Development, Tehran (In Persian).

Sistan Census Bureau (2006) Reported Sistan and Baluchestan registration of births and deaths, Registered annually at the segregated city Department of Sistan-Baluchistan province (In Persian).

Steckley M (2006) The Impact of governance on disaster vulnerability, Ontario, Canada,: Waterloo.

Sterman, J (2000) Business dynamics: Systems thinking and modeling for a complex world, Irwin/McGraw-Hill.

Sterman J, Oliva R, Linderman K, Bendoly E (2015) System dynamics perspectives and modelling opportunities for research in operations management. Journal of Operations Management. In Press.

Valenzuela-Ceballos S, Castañeda G, Rioja-Paradela T, Carrillo-Reyes A, Bastiaans E (2015) Variation in the thermal ecology of an endemic iguana from Mexico reduces its vulnerability to global warming. Journal of Thermal Biology 48(0):56-64.

Varis O, Kummu M, Lehr C, Shen D (2014) China's stressed waters: Societal and environmental vulnerability in China's internal and transboundary river systems. Applied Geography 53(0):105-116.

Vincent K, Cull T (2013) Climate vulnerability. Pielke, R.A. (ed), pp. 183-187, Academic Press, Oxford.

Vörösmarty CJ, Pahl-Wostl C, Bhaduri A (2013) Water in the anthropocene: New perspectives for global sustainability. Current Opinion in Environmental Sustainability 5(6):535-538.

Zabol master plan (2007) Analysis and conclusion of the status quo and offer suggestions patterns, Tash Consultant Engineers (In Persian).