تحلیل حساسیت تبخیر و تعرق محاسبه شده با استفاده از مدل بیلان انرژی روزانه و مقایسه آن با مدل سبال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد/ سنجش ‌از دور و سیستم اطلاعات جغرافیایی، دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، ، تهران، ایران.

2 دانشیار /دانشکده محیط زیست و انرژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

3 دانشیار/ گروه علوم و مهندسی آب، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

4 استادیار /دانشکده مهندسی عمران، آب و محیط زیست، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران.

5 استادیار /بخش فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی چهارمحال و بختیاری، سازمان تحقیقات، آموزش و ترویج کشاورزی، شهرکرد، ایران)

چکیده

 
امروزه مدل‌ها و روش‌های زیادی توسط محققین مختلف ارائه شده‌است که بر اساس داده‌های ورودی هواشناسی و سنجش ‌از‌ دوری اقدام به برآورد تبخیروتعرق در روی سطح زمین می‌نمایند. بدیهی است که کیفیت جمع‌آوری و پردازش داده‌های ورودی نقش مهمی را در دقت نهایی تبخیر‌و‌تعرق واقعی محاسبه شده خواهد داشت. در این خصوص لازم است قبل از شروع مطالعه، ورودی‌های یک مدل با دقت مضاعفی مطالعه شده و حسب اثرگذاری هر داده در نتایج خروجی یک مدل، هزینه و زمان لازم جهت آماده‌سازی اختصاص یابد. در مطالعه حاضر با استفاده از تصاویر ماهواره Landsat8 و یک مدل بیلان انرژی روزانه که بر اساس آزمون‌های آماری انجام شده نتایج آن تطابق خوبی را با داده‌های لایسیمتری،  تشت ‌تبخیر و تبخیر و تعرق پتانسیل نشان داده بود میزان تبخیر و تعرق واقعی در دشت شهرکرد محاسبه گردید و سپس حساسیت تبخیر و تعرق محاسبه شده نسبت به پارامترهای کلیدی مدل در روزهای ژولیوسی 147، 195 و 291 در 32 نقطه با تراکم پوشش گیاهی و تبخیروتعرق مختلف بررسی گردید و در نهایت نتایج حاصله با نتایج تحلیل حساسیت مدل سبالKhavarian Nahzak (2004)  که پیش از آن مطالعه شده بود مورد مقایسه و بررسی قرار گرفت. نتایج نشان داد که در مدل پیشنهادی داده‌های دمای سطحی، دمای هوا، تابش طول موج کوتاه ورودی و ساعات آفتابی دارای حساسیت بالا و رطوبت نسبی و آلبیدو دارای حساسیت متوسط تا زیاد و باد و شاخص سطح برگ دارای حساسیت کم تا متوسط می‌باشند. از این رو پیشنهاد گردید که داده‌های با حساسیت بالا با دقت بیشتری رکورد و ثبت شوند و در نهایت مقایسه نتایج تحلیل حساسیت مدل پیشنهادی با مدل سبال نیز نشان داد به جز دمای سطح زمین در بقیه موارد هم‌پوشانی قابل توجهی در بین دو مدل وجود دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity Analysis of Calculated Evapotranspiration Using Daily Energy Balance Model and Comparing it with SEBAL Model

نویسندگان [English]

  • A. Ramezani Khojeen 1
  • M. M. Kheirkhah Zarkesh 2
  • P. Daneshkar Arasteh 3
  • A. Moridi 4
  • R. Ali mohammadi 5
1 M.Sc. Student of Remote Sensing and GIS, Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran,
2 Associate Professor of Remote sensing and GIS Group, Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Associate Professor of Water Sciences and Engineering Department, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
4 Assistant Professor of Civil, water and environmental Engineering Faculty, Abbaspour School of Engineering, Shahid Beheshti University, Tehran, Iran
5 Assistant Professor of Agricultural & Natural resources research centre Of Chaharmahal & Bakhtiari province, Shahrkord, Iran
چکیده [English]

 
Nowadays, a lot of models are offered by researchers to estimate surface evapotranspiration (ET) based on meteorological and remote sensing data. Quality of prepared/processed input data has a pivot role on final accuracy of calculated actual ET. In this regard, inputs of a model should be evaluated cautiously before starting the study regarding the effect of each data on the model outputs as well as the required processing cost and time. In this study, actual ET in Shahrkord plain was calculated using Landsat8 satellite images and the proposed daily energy balance model. Results showed a good consistency with lysimeter, pan evaporation and potential ET. The sensitivity of calculated ET to key parameters of the model was then studied with different density of canopy and ET on Julian days of 147, 195, and 291 in 32 control points. Finally, these results were compared with the sensitivity analysis results of SEBAL model studied previously by Khavarian Nahzak (2004). The results showed that the data of group A including air temperature, land surface temperature (LST), income short radiation, and sunny hours, group B including relative humidity and albedo, and group C including the sensitivity of leaf area index and wind have high, medium to high, and low to medium sensitivity, respectively. Thus, it is recommended recording the most sensitive data with more accuracy. Finally, the sensitivity analysis results of proposed daily model showed a considerable similarity with SEBAL model, except for LST.

کلیدواژه‌ها [English]

  • Landsat8
  • Sensitivity analysis
  • Energy Balance Algorithm
  • Remote Sensing
  • Shahrkord
 

Akbari M (2004) Improvement of irrigation water management by combining satellite and field data and using SWAP simulation model. Ph.D Thesis, Tarbiat Modares University, Tehran (In Persian).

Akbari M, Toomanian N, Droogers  P, Bastiaanssen W, Gieske A (2007) Monitoring irrigation performance in Esfahan, Iran. using NOAA satellite imagery. Agricultural Water Management 881: 99-109.

Alizadeh A (2005) Principle of applied hydrology. Imam Reza University Press, Mashad, 815P (In Persian).

Allen RG, Bastiaanssen W, Tasumi M, Morse A (2001) July. Evapotranspiration on the watershed scale using the SEBAL model and Landsat images. In ASAE Meeting Presentation paper No. 01-2224.

Allen RG, Tasumi M, Trezza R, Waters R, Bastiaanssen W (2002) SEBAL Surface energy balance algorithms for land. Advance Training and Users Manual–Idaho Implementation, version. 1.

Bastiaanssen WGM (1995) Regionalization of surface flux desities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. Land Bouwuniversiteit te Wageningen, p. 273.

Bastiaanssen WGM, Chandrapala L (2003) Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agricultural Water Management 582: 171-192.

Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land SEBAL. 1. Formulation. Journal of Hydrology 212: 198-212.

Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, Van der Wal T (1998) A remote sensing surface energy balance algorithm for land SEBAL.: Part 2: Validation. Journal of Hydrology 212: 213-229.

Bastiaanssen WG, Ahmad MUD, Chemin Y (2002) Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research 38(12): 9-1.

Brunel JP (1989) Estimation of sensible heat flux from measurements of surface radiative temperature and air temperature at two meters: Application to determine actual evaporation rate. Agricultural and Forest Meteorology 46: 179-191

Businger JA (1988) A Note on the Businger–Dyer Profiles. Boundary-Layer Meteorol  42: 145–151.

Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28:181-189.

Duffie JA, Beckman WA (1980) Solar engineering of thermal processes (Vol. 3). New York etc.: Wiley. 910P.

Daneshkar Arasteh P, Tajrishy M (2006) Estimation of free water evaporation from hamun wetlands using satellite imagery. Proceedings of the AECRIS 2006 Conference, Preston, UK, 131-135.

Emadzade M, Tajrishi M, Daneshkar Arasteh P (2010) Estimation of evapotranspiration and efficiency in basin scale using remote sensing. 5th National Congress on Civil Engineering, Mashad, Iran, May 4-6th (In Persian).

Farah H, Bastiaanssen WG (2001) Impact of spatial variations of land surface parameters on regional evaporation: a case study with remote sensing data, Hydrological Processes 15(9): 1585-1607.

Hafeez MM, Chemin Y, Van De Giesen N, Bouman B (2002, July) Field evapotranspiration estimation in central Luzon, Philippines using different sensors: Landsat 7 ETM+, Terra Modis and Aster. In ISPRS/CIG conference 12(8).

Jackson RD, Reginato RJ, Idso SB (1977) Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resources Research 13(3):651-656.

Kaviani A, Sohrabi T, Arasteh P (2011) Evapotranspiration and water productivity estimation using SEBAL algorithm and comparison with lysimeter data. Iranian Journal of Irrigation and Drainage 5(2):165-175 (In Persian).

Khavarian Nahzak H (2004) Estimation of evaporation using remote sensing, M.Sc. Thesis, Tarbiat Modares University, Tehran (In Persian).

Kheirkhah Zarkesh M, Mahboobian A (2010) Evaluation the SEBAL model algorithm efficiency for evaporation estimating. M.Sc. Thesis. Science and Research Branch, Islamic Azad University, Tehran, Iran (In Persian).

Lane SN, Richards KS, Chandler JH (1994) Distributed sensitivity analysis in modelling environmental systems. Proceedings of the Royal Society. Series A. 447: 49-63.

Mobasheri MR, Khavarian H (2004) Analysis of satellite based methods to determine evapotranspiration. Journal of Geographical Sciences 3-4 (3) (In Persian).

Mobasheri MR, Khavarian H, Ziaeian P, Kamaly, Gholamali (2004) Evapo-transpiration assessment using Terra/MODIS images in the Gorgan general district. Journal of Spatial Planning 11(1): 21-142 (In Persian).‎

Monin AS, and Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence. The MIT Press. Cambridge. MA, 769 p.

Yang X, Qiming Z, Melville M (1997) Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept. International Journal of Remote Sensing 18(2):453-459.