برآورد توزیع مکانی بارندگی با کمک تئوری مجموعه‌های فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی /مرکز تحقیقات حفاظت خاک و آبخیز داری.

2 استادیار/ مرکز تحقیقات حفاظت خاک و آبخیزداری

چکیده

با توجه به اهمیت بارندگی در مطالعات منابع آب و هیدرولوژی، ضعف در تعیین تغییرات مکانی بارندگی می‌تواند از عوامل مهم ایجاد خطا در نتیجه‌گیری مطالعات باشد. روشهای زمین آماری به دلیل در نظر گرفتن همبستگی مکانی داده‌ها معمولا دقت مناسبی را ارائه می‌نمایند. کافی نبودن داده‌ها کاربرد روشهای زمین آماری برای برآورد توزیع مکانی بارندگی را محدود می‌نماید. استفاده از داده‌های تولید شده (کارشناسی) که خود دارای درصدی خطا هستند، دارای عدم هم ارزی با داده‌های مشاهده‌ای می‌باشد. لذا به نظر می‌رسد استفاده از تئوری مجموعه‌های فازی، که توانایی استفاده از داده‌های تخمینی و اعداد تولید شده را دارد، می‌تواند در برآورد مناسبتر بارندگی کمک نماید. در این مطالعه قابلیت روش فازی کریگینگ ارزیابی و سپس با روشهای کریگینگ معمولی، کوکریگینک و TPSS1 برای برآورد بارندگی سالانه مورد مقایسه قرار گرفته است. برای این منظور از دو حالت داده استفاده گردید. در حالت اول تعدادی نقطه کمکی با توجه به توزیع واریانس خطا، انتخاب و این نقاط فازی گردید، در حالت دوم تعداد نقاط کمکی افزایش داده شد. نتایج بررسی روشها نشان داد که برای برآورد بارندگی سالانه استفاده از روش فازی کریگینگ در هر دوحالت و همچنین در برونیابی داده‌ها بهتر از سایر روشها عمل می‌نماید. ضمن آنکه با افزایش تعداد نقاط کمکی مقدار خطای برآورد افزایش می‌یابد. همچنین بررسی‌ها نشان داد که تقسیم منطقه به واحدهای همگن، با استفاده از روش تحلیل خوشه‌ای، داده‌های بارندگی را ایستا می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating Spatial Distribution of Rainfall by Fuzzy Set Theory

نویسندگان [English]

  • S Rahimi Bondarabadi 1
  • B Saghafian 2
1 Scientific staff, soil conservation and watershed management research institute
2 Assistant Professor, soil conservation and watershed management research institute
چکیده [English]

One of the important inputs for a water resources study is rainfall. Choosing improper interpolation methods may result in extensive errors. Geostatistical methods may also fail to be used, in case of insufficient data. However, generated data has small errors that produce unequivalency in data. Using fuzzy set theory, every data (observed, generated value and obtained from an expert or imprecise) valuated by membership function. Kriging, Weighted Moving Average (WMA), Thin Plate Smoothing Splines (TPSS) and Fuzzy Kriging Interpolation is executed for annual rainfall in eastern and southeastern Iran. Two cases were studied. The first case generated the data for some of the points and fuzzified these points. In the second case, the number of the generated points are increased. Variogram analysis demonstrated spatial correlation between the runoff and the annual rainfall in the study area. Also, fuzzy variogram showed spatial correlation with larger ranges. The results show that the fuzzy kriging method is an accurate method in estimating monthly and annual rainfall. Increasing the number of generating points would however increase the estimating error.  

کلیدواژه‌ها [English]

  • Cluster analysis
  • Geostatistics
  • Annual rainfall
  • Fuzzy Set Theory
  • Fuzzy kriging
ثقفیان، ب.، رحیمی بندرآبادی، س.، طاهری شهرآئینی، ح. و  غیومیان، ج. 1383. اثر تراکم ایستگاه و تفکیک منطقه‌ای در برآورد توزیع مکانی بارندگی روزانه (مطالعه موردی بر روی بارندگی جنوب غرب ایران). مجله استقلال، شماره 1، جلد اول، 75-59.
رحیمی بندآبادی، س. و مهدیان، م.ح. 1383. بررسی روشهای توزیع مکانی بارندگی روزانه و ماهانه در حوضه دریای خزر. پژوهش و سازندگی. 67.
مهدوی، م.، حسینی چگینی، ا.، مهدیان، م.ح. و رحیمی بندرآبادی، س. بررسی کاربرد روش‌های ژئواستاتیستیک در برآورد بارندگی مناطق خشک و نیمه خشک جنوب شرق ایران. مجله منابع طبیعی ایران. دانشگاه تهران. 57 (12) : 211-225.
Alhamed, A., Lakshmivarahan, S. and Stensrud, D. J. (2002), "Cluster Analysis of Multimodel Ensemble from SAMEX", Mon. Wea. Rev., 130, pp. 226-256.
Bandermer, H., Gebhardt, A. (2000), "Bayesian Fuzzy Kriging. Fuzzy Sets and Systems", 112, pp. 405-418.  
Bardossy, A., Bogardi, I. and Kelly, W.E. (1989), "Geostatistics Utilizing Imprecise (fuzzy) Information", Fuzzy Sets and Systems, 31, pp. 311-327. 
Bartels, F. (1997), "Ein Fuzzy-Auswertungs-und Kriging System fur Raumbezagene Daten. Msc", Thesis, Institute of Informatics, University of Kiel. p. 94. (in German).
Gallo, G., Spanuolo, M. and Spinello, S. (1998), "Rainfall Estimating from Sparse Data with Fuzzy B-Splines", Journal of Geographic Information and decision Analysis, 2(2), pp. 216-236.
Goovaerts, P. (2000), "Geostatistical Approach for Incorporating Elevation into Spatial Interpolation of Rainfall", Journal of Hydrology, 228(1-2), pp.113-129.
Hung. Y., Wong, p. and Gedeon, T. (1998), "Spatial Interpolation using Fuzzy Reasoning and Genetic Algorithms", Journal of Geographic Information and decision Analysis, 2(2), pp. 204-214. 
Hutchinson, M.F. and Gessler, P.E. (1994), "Splines-Morthan Just A Smooth Interpolator",  Geoderma, 2, pp. 45-67.
Issaks, E. and Srivastava, R.M. (1989). "Applied Geostatistics". OxfordUniv. Press, New York,. p. 561.
Stockburger, D.W. (1998), "Multivariate Statistics: Concepts, Models and Applications", SouthwestMissouriStateUniversity.
     www.psychstat.smsu.edu/multibook/mlt00.htm.
Vega, A. N. (2000), "Potential Applicability of Fuzzy Logic in Geostatistics",
http:fibox,vt.edu/a/antieto/web/fuzzy/fuzzy.htm.
Watson, G.S. (1984), "Smoothing and Interpolation by Kriging and with Splines", Mathematical Geology, 16(6), pp. 601-615.
Willmott. C.J. (1982). "Some Comments on the Evaluation of Model Performance", Bulletein American Meteorological Society, 36(11), pp. 1313-1982.