محاسبه اثرعدم قطعیت تابع احتمال-دبی در برآورد ریسک خسارت کشاورزی ناشی از سیل با استفاده از روش مونت‌کارلو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار /گروه سازه‌های آبی دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استاد /گروه مهندسی آب، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران.

3 استاد /گروه مهندسی آب، دانشگاه A&M تگزاس، کالج استیشن، امریکا

چکیده

تحلیل ریسک به علت استفاده از مدل‌های ریاضی برای برآورد مخاطرات از یک‌طرف و آسیب‌پذیری از طرف دیگر همواره در معرض خطا است. این خطا هم به دلیل عوامل ورودی و هم به دلیل ساختار مدل، می ‌تواند عدم قطعیت معنی داری را بر خروجی مدل جهت تصمیم سازی اعمال نماید. تحلیل ریسک زمانی که با مقوله موجودات زنده سروکار پیدا می‌نماید به علت وابستگی ماهوی این نوع مسائل به تغییرات زمانی و مکانی پیچیده‌تر از حالت‌های دیگر می‌باشد. این تحقیق به تحلیل تأثیر عدم قطعیت تابع دبی-احتمال در برآورد ریسک زمانی و مکانی سیل برای منطقه آزارود در حوالی تنکابن مازندران با استفاده از روش مونت‌کارلو می‌پردازد. جهت
شبیه‌سازی سیل از مدل یک بعدی HEC-RAS استفاده گردیده است. همچنین از توابع خسارت زمانی و فیزیکی گیاه برنج به عنوان نمونه استفاده گردید و سپس ترکیب توابع خسارت و هیدرولیک سیل در محیط GIS صورت پذیرفت. در نهایت پس از تلفیق ریسک زمانی و مکانی خسارت، عدم قطعیت تابع دبی-احتمال در محاسبه ریسک منظور گردید. نتایج نشان داد که خسارت سالانه مورد انتظار کشاورزی (AGEAD) با در نظر گرفتن عدم قطعیت تابع دبی-احتمال از 8/1 درصد به 9/1 درصد تغییر می‌کند و عدم قطعیت ناشی از تابع مزبور برابر با 5/5 درصد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the effect of discharge - probability function uncertainty on the risk of agricultural loss due to flood using Monte Carlo method

نویسندگان [English]

  • Z. Ganji Nowrouzi 1
  • A. Shokoohi 2
  • V.P. Singh 3
1 Assistant Professor of Water Structure Dept., Shahroud University of Technology, Shahroud, Iran
2 Professor of Water Engineering Dept. Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
3 Professor of Department of Water Engineering, Texas A&M University, College Station, USA
چکیده [English]

Risk analysis, because of employing mathematical models for evaluating confronted hazards and also pertinent vulnerability, introduces errors in results. The source of mentioned errors could be input data (components) and/or model structure which will impose meaningful uncertainty upon the model output. Present research investigates the effect of uncertainty of discharge-probability function on flood temporal and spatial risk assessment. The Monte Carlo method was engaged for uncertainty analysis and the Azaroud watershed in southern part of the Caspian Sea was selected as the case study. The study was based on temporal and physical loss functions of rice, while HEC-RAS provided the required hydraulic information. Combining loss functions and flood hydraulics in a GIS framework led to Agricultural Expected Annual Damage (AGEAD). Finally the uncertainty of discharge-probability function was introduced to AGEAD which caused it to increase from %1.8 to %1.9. Based on the achieved results, the contribution of probability-discharge function uncertainty in rising up the agricultural expected annual damage was 5.5 %.

کلیدواژه‌ها [English]

  • Uncertainty
  • Monte Carlo
  • Discharge - probability Function
  • Spatial and temporal risk
  • Agricultural loss
Aronica GT, Franza F, Bates PD, Neal JC (2012) Probabilistic evaluation of flood hazard in urban areas using Monte Carlo Simulation. Hydrological Processes 26:3962-3972

Brody SD, Blessing R, Sebastian A, Bedient P (2013). Delineating the reality of flood risk and loss in southeast Texas. Natural Hazards Review ASCE 10:89-97

Ganji Z, Shokoohi A (2014) A mathematical model for agricultural flood loss estimation. Iran Water Resources Research 10(3):1-13

Ganji, Z, Shokoohi A, Samani J MV (2012) Developing an agricultural flood loss estimation function (case study: rice). Natural Hazard 64:405-419

Gates K, Al-Zahrani MA (2002) Spatiotemporal stochastic open-channel flow. J. of Hydraulic Engineering ASCE 122(11):641-661

Hansen D, Bari R (1996) Uncertainty in water profile of buried stream flowing under coarse material. Journal of Hydraulic Engineering ASCE 128(8):761-773

HEC-FDA (2008) Flood damage reduction analysis. User manual version 1.2.4, Us Army Corps of for Water Resources Hydrologic Engineering Center, 374 p

Hochrainer-Stigler S, Lugeri N, Radziejewski M (2014) Up-scaling of impact dependent loss distributions: a hybrid convolution approach for flood risk in Europe. Nat Hazards 70:1437-1451

Hosseini SM (2000) Statistical evaluation of the empirical equation that estimate hydraulic parameters flow through rockfil. Stochastic Hydraulics 2000 eds. Wang ZY, Hu, SX, Balkema, Rotterdam, 916p

Hsu WK, Huang PC, Chen CW, Chang CC, Hung DM, Chiang WL (2011) An integrated flood risk
assessment model for property insurance industry in Taiwan. Nat Hazards 58(3):1295–1309

Hsu WK, Tseng CP, Chiand WL, Chen CW (2012) Risk and uncertainty analysis in the planning stages of a risk decision-making process. Nat Hazards 61:1355–1365

Li K, Wu S, Dai E, Xu Z (2012) Flood loss analysis and quantitative risk assessment in china. Nat. Hazards, 63:737-760

Lian Y, Chie Yen B (2003) Comparison of risk calculation methods for a culvert. J. of Hydraulic Engineering ASCE 129(2):140-152

Papadopoulos CE, Yeung H (2001) Uncertainty estimation and Monte Carlo simulation method. Flow Measurement and Instrumentation 12:291–298

Shokoohi A, GAnji Z (2013) Non-structural management of floodplains using agricultural flood loss estimation. Irrigation and Water Engineering 12:83-94

Tung and Yen (2005) Hydrosystem engineering uncertainty analysis, McGraw-Hill, New York, 285p.

Tung YK (1993) Uncertainty and reliability analysis. In: Water Resources Handbook, Chapter 7, ed. Mays, L. W. McGraw-Hill, New York

USACE (1996) Risk-based analysis for flood damage reduction studies. Manual No. 1110-2-1619, 63 p.

Yeh KC, Tung Y K (1993) Uncertainty and sensitivity analysis of Pit-Migration model. Journal of Hydraulic Engineering ASCE 119:262-283

Zou R, Lung W, Guo H (2002). Neural network embedded Monte Carlo approach for water quality modeling under input information uncertainty. Journal of Computing in Civil Engineering 16(2):135-142