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 چکیده
با توجه به   .  مقاله به بررسی هوادهی در مجاری بسته پرداخته شده است           در این   

عدم وجود روابط همخوان برای پیش بینی و محاسبه بهینه دبی هوای ورودی و به              
دلیل تاثیرگذاری پارامترهایی مختلف همچون آشفتگی،  هندسه مجرا قبل و بعد از             

ستفاده از اطلاعات بدست آمده دریچه و شرایط هیدرولیکی بر میزان هوا گیری، با ا        
از مدل های فیزیکی موجود به آموزش شبکه عصبی مصنوعی به عنوان ابزاری                

شبکه عصبی  .   شود همناسب در جهت محاسبه بهینه هوای ورودی پرداخت            
مصنوعی با ویژگی یادگیری یا نگاشت پذیری بر اساس ارائه داده های تجربی به               

ری و ساختار پذیری موازی برای سیستم های         همراه قدرت و توانایی تعمیم پذی       
از آنجا که در    .  پیچیده که مدل سازی آنها به سختی انجام می شود مناسب می باشد         

 میان الگوریتم های معمول آموزش شبکه، الگوریتم پس انتشار خطا                       
Back Propagation              با فراهم آوردن روش محاسباتی کارا، به عنوان بیشترین 

 مهندسی شناخته شده و استفاده از آن به کمک توابع تبدیل -ل فنیکاربرد در مسائ
غیر خطی از طریق آموزش پارامترهای شبکه در راستای بهینه سازی شاخص                 
اجرایی به عنوان معمول ترین راه حل در مسائل پیچیده مهندسی با پارامترهای                

شبکه  حاضر از روش فوق جهت طراحی          مقالهمتعدد شناخته شده است، لذا در         
اطلاعات آزمایشگاهی از موسسه تحقیقات آب ایران و بر اساس  .استفاده شده است 

.  مدل های هیدرولیکی تخلیه کننده های تحتانی سدهای در دست ساخت بدست آمد
این اطلاعات شامل تخلیه کننده های تحتانی دشت عباس، مدل اولیه و مدل                 

 سدهای جره، کرخه، البرز و کوثر       اصلاح شده تخلیه کننده سد جگین و تخلیه کننده      
در این ارتباط سعی گردید تا جهت افزایش اطلاعات با انجام آزمایش های            . می باشد

های تکمیلی انجام    آزمایش. تکمیلی و اضافی نیاز اساسی این پژوهش مرتفع گردد        
، البرز و دشت    )مدل اصلاح شده  (گرفته بر روی مدل تخلیه کننده های سد جگین          

همچنین اطلاعات مربوط به     . سط این محققان صورت پذیرفته است       عباس تو 
تخلیه کننده   تحتانی سد فولسوم در آمریکا نیز از منابع خارجی کسب و مورد استفاده 
قرار گرفت بر اساس نتایج بدست آمده نشان داده شد که شبکه عصبی مورد                    

زان هوای مورد نیاز    استفاده توانائی بسیار قابل قبولی جهت پیش بینی و تخمین می          
 .بعد از دریچه داشته است
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Abstract 
Aeration of flow downstream of outlet gates is an 

effective way to eliminate the risk of cavitation. Many 

works have been done and various relationships have 

been developed to predict the quantity of entrained air. 

Owing the complexity of flow in the aeration zone 

arising from the two-phase flow, these relationships 

cannot however be used in general. On the other hand, 

in recent years, applications of Artificial Intelligence, 

such as Neural Network, Fuzzy Logic, and Generic 

Algorithm have attracted the attention of many 

investigators. These are known as powerful tools to 

solve engineering problems with uncertainties. In this 

paper, based on experimental data obtained from field 

measurements and physical model studies, an Artificial 

Neural Network (ANN) with a general back 

propagation error, is suggested to estimate the air 

demand downstream of bottom outlet gates. The results 

with a regression parameter of 0.992 showed that the 

model is very well capable of predicting air demand. 
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Introduction 
Gates and valves are used to control the flow discharge 
in bottom outlet conduits. These are one of the most 
important components of high dams. Destructive 
vibrations, hydrodynamic forces, and flow aeration are 
the main tasks in the design of such structures. When 
the outlet gate is placed inside the conduit, reduced 
pressures which cause cavitation are likely to happen 
just downstream the gate. In hydraulic structures, 
cavitation is mostly caused by abrupt changes of the 
flow boundary. At high velocity flows, turbulence 
intensity and the resultant pressure fluctuations will 
also improve the situation in favor of cavitation.  
 
It has been found that diffusing air into the flow will 
eliminate cavitation damages. Aeration will also 
improve the mean pressure and reduce the intensity of 
hydrodynamic pressure fluctuations. Therefore, 
aerators are recommended just downstream the gates to 
introduce air into the flow. The size of air vents will be 
determined by assuming a certain flow velocity inside 
the aerator. Therefore, the main task  in designing an 
aerator is to predict the air demand and to determine the 
size of aerators for different situations.  
 
In the study of air demand, attention has been paid to 
model-prototype studies. The relevant parameters 
which affect the aeration process are determined to 
develop design formulas based on simplified 
assumptions. However, these formulas have been 
generated under special geometries and hydraulic 
characteristics, and thus can not be used for common 
situations (Kavianpour and Rajabi, 2005). Therefore, 
based on experimental and field measurements, an 
Artificial Neural Network (ANN) is suggested to 
estimate the air-demand downstream of gates in bottom 
outlet conduits. ANN is known to be useful for 
complicated engineering problems with nonlinear 
relationships.  
 

The Previous Studies on Aeration 
Over the years attention has been given to the flow 
aeration downstream of bottom outlet gates. The main 
studies are based on experimental information, 
obtained from physical models. The results are 
presented in the form of aeration coefficient β, as 
follows: 
 

QQ wa=β                (1) 

 
in which, Qa and Qw represent respectively the quantity 
of air and water. The aeration coefficient is expressed 
in terms of flow characteristics and the geometry of the 
conduit. There are a number of expressions, which are 
suggested to be used in predicting the aeration 
coefficient and the quantity of air demand downstream 
of outlet gates. However, there are still uncertainties in 

applying these equations for every situation as they are 
based on model studies with special geometries and 
hydraulic characteristics (Kavianpour and Rajabi, 
2005).  
 
The U.S. Army Corps of Engineers (USACE) suggests 
the use of various design assumptions to arrive at the 
size of air vents. The method of computing air demand 
for regulating gates is based on the fact that maximum 
air demand for free surface discharges occurs at about 
80% of gate openings (Pine Flat Dam=50% opening, 
Tygart Dam=83.3% opening) (USACE, 1988). By 
assuming a contraction coefficient of 0.8 for a 45° leaf 
bottom and the maximum air velocity of 45m/sec to 
90m/sec within the air vent, the cross sectional area of 
the vent can be calculated.  
 
In 1943, Kalinske and Robertson reported their results 
on air demand in situations when a hydraulic jump is 
formed in the downstream conduit (Vogl et al, 1988). 
Based on their results, the aeration coefficient,β, in the 
condition of a hydraulic jump  was suggested as a 
function of Froude number Fr, in the form of: 
 

( )β = −0 0066 1 1 4. .
rF               (2) 

 
Moreover, for a free surface flow, in a partially full 
conduit with no hydraulic jump, the following 
relationship was suggested: 
 

( )β = −0 03 1 1 06. .
rF               (3) 

 
A similar equation was also suggested by Campbell and 
Guyton (1953) as: 
 

( )β = −0 04 1 0 85. .
rF              (4) 

 
To establish and check the air demand design criteria 
for air vents downstream of bottom outlet gates and to 
collect enough data for the training of the neural 
network,  study was conducted on several physical 
models of outlet gates. These models have been 
constructed and studied at the Water Research Institute 
of Iran. The data also included the results of studies 
made by Kavianpour (2001, 2005). In his works, the 
variation of air demand with the flow condition and the 
geometry of aeration system were studied. Also, two 
different mechanisms for flow aeration, introduced by 
Kavianpour (2003), were taken into account in the 
present study (Kavianpour, 2003).  
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Artificial Neural Networks 
Neural networks are information-processing units 
originally intended to simulate the performance and 
characteristics of the human brain. They are composed 
of simple elements (neurons) connected to each other, 
which operate in parallel and in layers, inspired by 
biological neurons system. Neural networks can be 
trained to solve difficult problems. Therefore, they are 
useful in solving complex functions in complicated 
engineering problems with various types of variables 
and nonlinearity.  
 
Neural networks can be trained by supervised or 
unsupervised training methods to simulate a particular 
function by adjusting the values of each connection. 
Neural networks are usually adjusted or trained, so that 
a particular input leads to a specific target output. 
According to Figure 1, the network is adjusted based on 
the comparison of the output and the target. The 
process will continue until the network output matches 
the target. Typically, many such pairs of input-target 
are used to train a network in a supervised learning 
(Hagan et al, 1996; Haykin, 1998). 
 
From mathematical point of view, artificial network is 
a vector transforming which projects a vector from n to 
m dimensions. The architecture of a network consists 
of; 
• Number of layers in a network; 
• Number of neurons in each layer; 
• Transfer function of neurons; and 
• how the layers are connected to each other.  
 

Aside from the number of the neurons in a network's 
output layer, the designer selects the number of neurons 
in each layer. Each layer in a network has a weight 
matrix, a bias vector, and an output vector. One of the 

limitations of competitive networks is that some 
neurons weight vectors may start far from any input 
vector and never win the competition. The result is that 
they never perform a useful function.  Therefore, biases 
are used to give these neurons an advantage over 
neurons that win often.  
 
Generally, in order to simulate a nonlinear relationship 
between inputs and outputs, a nonlinear transfer 
function is required.  These functions show how an 
ANN defines a system function and generate output. 
There are different kinds of functions of which, the 
most important are as follows; 
 
• Threshold-logic functions 
• Hard-limit functions 
• Continuous functions (Sigmoid) 
• Radial-basis or Gaussian function 
 
Multilayer networks often use the log-sigmoid transfer 
function as follows; 
 

)( aXe1
1Y −+

=                    (5) 

 
where, a is constant, and X and Y are the sum of input 
and output, respectively. This function generates 
outputs between zero and one. However, if the inputs 
consist of zero values, multilayer networks may use the 
hyperbolic tangent sigmoid transfer function to 
improve their performance. This function varies 
between two symmetric extremes. The two extremes 
are normally bounded between –1 and +1. For large 
values of X, these functions have positive derivatives. 
Since in this study, inputs i include zero values, the 
tangent sigmoid function with different parameters was 
applied to generate outputs. 

 

 
Figure 1- Algorithm of the neural network 
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Back Propagation Neural Networks 
Back propagation neural network is one of the most 
widely used techniques that can approximate any 
function with a finite number of discontinuities by 
giving sufficient neurons in hidden layers (Figure 2). 
Generalizing the Widrow-Hoff learning rule to 
multiple-layer networks and nonlinear differentiable 
transfer functions creates back propagation. Input 
vectors and the corresponding target vectors are used to 
train a network for approximating (nonlinear or 
regression) function. The implementation of the back 
propagation, updates the network weights and biases, 
so that the performance function decreases more 
rapidly. 
 
The back propagation computes nonlinear multi-layer 
networks in either batch mode or incremental mode. 
Batch training of a network proceeds by making weight 
and bias changes based on an entire set of input vectors 
(Rajabi, 2004; Vogl et al, 1988). Incremental training 
changes the weights and biases of a network as needed 
after presentation of each individual input vector. 
Incremental training is sometimes referred to as "on 
line" or "adaptive" training. This process can be used 
with a number of different optimization strategies. Each 
algorithm has a different computation and storage 
requirement.  
 
The architecture of a multi-layer network is not 
completely constrained by the problem to be solved. 
The number of inputs to the network is constrained by 
the problem, and the number of neurons in the output 
layer is constrained by the number of outputs required 
by the problem. However, the number of layers 
between network inputs and the output layer and the 
sizes of the layers are selected by the designer. The 

back propagation algorithm can be summarized as 
follows; 
• Set all weights, biases, weight modifiers and bias 

modifiers to random values in the desired ranges. 
• Scale and present input vector to the input layer. 
• Calculate input vector of the hidden layers 
• Determine output vector and continue the 

procedure for all layers to obtain output vector. 
• Calculate the error vector and total error to check 

the convergence: 
• Calculate the weight and bias modifiers   
• Modify weights and biases in the output layer: 
• Back propagate the error in the hidden layers of the 

network, modify weights and biases, calculate 
input vector and  reiterate the process again. 

 
The adaptive algorithm is used to find out the best 
network architecture and as mentioned before the 
supervised learning procedure is employed for training 
the network. The network error is computed based on 
RMS standard formulation and is propagated into the 
network until convergence is reached. 
 
Processing the Data 
There are a number of parameters, which are important 
in determining the air demand downstream the outlet 
gates. These parameters are the effective head, the 
geometry of the gate, the gate opening, the flow 
discharge, the cross sectional area of the conduit on the 
upstream and downstream of the gate, and the 
turbulence intensity of the flow. The analytical solution 
may not be easily obtained and usually they contain 
considerable errors (Kavianpour and Rajabi, 2005). 
Therefore, a back propagation neural network was used 
to process these variables for predicting the quantity of 
air demand. The computational procedure can be 
expressed as follows:  

 

 
Figure 2- Back propagation network topology 
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• Network training based on the input and 
output data 

 
The data was based on laboratory experiments 
performed at Water Research Institute of Iran. The 
results were based on the experimental results of outlet 
conduits, which were collected from the physical model 
studies of Jegin, Jareh, Alborz, Kosar, and Karkheh 
dams in Iran. Full sets of data and their variation can be 
found in the work of Rajabi (2004). Training of the 
model was completed with a collected series of 209 
pairs of input and target vectors. Since it was not 
possible to measure the turbulence intensity in the 
performed experiments, the model used only five 
neurons for input layers which include the effective 
head, water discharge, the area of the gate, and the gate 
opening. Based on the results of Kavianpour (2003), 
the cross sectional area of the conduit upstream and 
downstream of the gate is considered by the choice of 0 
or 1 for a neuron. If the aeration after a gate is just from 
its upper surface or from all around the jet  the value 
for this neuron would be 1 and 0 respectively 
(Kavianpour, 2003).  
 

• Selection of architecture (number of hidden 
layers, processing units and unit interaction)  

 
In this study Levenberg-Marquardt algorithm was used 
due to its fast convergence and accurate training as a 
suitable algorithm for problems of having function 
approximation with a few hundred weights (Hagan and 
Menhaj, 1994).  
 
Usually, the best architecture for a network depends 
upon the problem involved. In nonlinear networks the 
selection of more neurons in the hidden layer will give 
rise to a more powerful network. In this work, the 
number of hidden layers was first fixed to one and as 
the learning process was progressed, more and more 
neurons were added to the hidden layer until 
convergence was achieved. For a more rapid 
convergence, this scheme was developed for more 
hidden layers with equally increasing the number of 
neurons in the layers to obtain the best suitable 
architecture. This is important if the network does not 
converge for a number of neurons and a certain number 
of learning cycles under a predefined error gradient 
tolerance.   
 
A three-layer network, 7-6-1 with log-sigmoid (7 
neurons) and tan-sigmoid (6 neurons) transfer function 
in the hidden layers and a linear transfer function in the 
output layer is used for this function approximation 
(regression) problem. When there are zero values 
within the input data, the tangent hyperbolic 
nonlinearly could work better than sigmoid in the 
hidden layers. In such cases the sigmoid transfer 
function may generate zero values and so it will not let 

the network to learn well. Therefore, in this study the 
tangent hyperbolic sigmoid function was used for 
approximation. 
 
One problem that occurs during the training is over-
fitting regularization. In this study the Levenberg-
Marquardt training algorithm were modified to produce 
well generalized networks and to reduce the difficulty 
of determining the optimum network architecture 
(Foresee and Hagan, 1997; Hagan and Menhaj, 1994). 
The algorithm generally works well when the network 
inputs and targets are so scaled that they fall 
approximately in the range (-1, 1). Therefore, a 
function was used to perform the scaling network 
inputs and targets and to normalize the mean and 
standard deviation of the training set. To convert 
outputs back into the same units of those original 
targets, a function was also required. Using the 
algorithm for generalization, it is important to run the 
algorithm until the effective number of parameters is 
converged.  
 
Results and Discussion 
In this study, neural network was used to predict the 
quantity of air required downstream the outlet gates. 
The results are shown in Figures 3 to 6.  Figure 3 
shows that the outputs follow the targets reasonably 
well. The regression parameter of 0.992 shows a very 
good agreement between the input and target data. In 
this figure, the line A=T refers to the ideal condition of 
output=target which is very close to the best fit line. 
 
The network selected a random test data that was used 
for model validation purposes. This includes simulating 
the model for these data and computing the residuals 
from the model when applied to these data. This would 
be a good justification for the model, when its output is 
compared to the measured one on a data set that had 
not been exposed to the network. The set of 20 random 
data, which was used to test the model, is called the 
Validation Data. Figure 5 shows the outputs which are 
plotted versus the validation test sets. The results show 
a regression of 0.995 which is well comparable with the 
results of Figure 3. 
 
To improve the generalization in the neural network, 
the method of regularization parameters based on the 
Bayesian framework of MacKay was used for this 
study (MacKay, 1992). The algorithm will run until the 
effective number of parameters has converged. It can 
also be converged if the sum squared error (SSE) and 
sum squared weights (SSW) are relatively constant 
over several iterations. Figure 5 show the results of this 
model. According to the figure, after convergence, the 
number of epochs has reached 222 and SSE equals 
0.437. 
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Figure 3- Graphical output for entire data set (A=Output and T=Target) 

 

 
Figure 4- Graphical output for validation data set 
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Figure 5- Training Result for neural network when maximum MU reached. 

 
Figure 6 illustrates the results of the graphical output 
for validation data set. In this figure the best linear fit is 
indicated by a dashed line and the perfect fit (output 
equals targets) is indicated by the solid line. The result 

with the regression of 0.977 shows a good indication of 
the ability of the present neural network for predicting 
the quantity of air demand downstream the bottom 
outlet leaf gates. 

 

 
Figure 6- Graphical output for test data set. 
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Conclusive Remarks 
In this paper, application of Neural Network for the 
design of aerators in bottom outlet conduits was 
presented. The main factors affecting the process of air 
entrainment are the flow velocity, flow discharge, the 
sizes of the conduit and aerator, and the effective head 
of water. These parameters form the input data and the 
quantity of air entrainment was the output of the model. 
The model was trained and modified using the field 
measurements and the physical model studies of 
bottom outlet conduits. The study revealed the 
efficiency and capability of neural network in modeling 
nonlinear behavior of flow aeration downstream the 
outlet gates. The previous studies of Kavianpour (2005) 
with a set of 209 data showed that a wide range of 
average error from 111% to 569% may be expected in 
using the previous expressions reported by many 
investigations (Kavianpour and Rajabi, 2005). 
However, for the same set of input and target data, the 
neural network predicted the air demand with a 
regression parameter of 0.992 and sum squared error of 
0.43. Therefore, it can be concluded that the model is 
capable of simulating the process reasonably well, 
compared with those of previous investigations. 
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