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Application of Neural Network for Flow
Aeration downstream of Qutlet Leaf Gates
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Abstract
Aeration of flow downstream of outlet gates is an

effective way to eliminate the risk of cavitation. Many
works have been done and various relationships have
been developed to predict the quantity of entrained air.
Owing the complexity of flow in the aeration zone
arising from the two-phase flow, these relationships
cannot however be used in general. On the other hand,
in recent years, applications of Artificial Intelligence,
such as Neural Network, Fuzzy Logic, and Generic
Algorithm have attracted the attention of many
investigators. These are known as powerful tools to
solve engineering problems with uncertainties. In this
paper, based on experimental data obtained from field
measurements and physical model studies, an Artificial
Neural Network (ANN) with a general back
propagation error, is suggested to estimate the air
demand downstream of bottom outlet gates. The results
with a regression parameter of 0.992 showed that the

model is very well capable of predicting air demand.

Keywords:Neural Network, Aeration, Outlet Gate,
Cavitation
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Introduction

Gates and valves are used to control the flow discharge
in bottom outlet conduits. These are one of the most
important components of high dams. Destructive
vibrations, hydrodynamic forces, and flow aeration are
the main tasks in the design of such structures. When
the outlet gate is placed inside the conduit, reduced
pressures which cause cavitation are likely to happen
just downstream the gate. In hydraulic structures,
cavitation is mostly caused by abrupt changes of the
flow boundary. At high velocity flows, turbulence
intensity and the resultant pressure fluctuations will
also improve the situation in favor of cavitation.

It has been found that diffusing air into the flow will
eliminate cavitation damages. Aeration will also
improve the mean pressure and reduce the intensity of
hydrodynamic  pressure fluctuations. Therefore,
aerators are recommended just downstream the gates to
introduce air into the flow. The size of air vents will be
determined by assuming a certain flow velocity inside
the aerator. Therefore, the main task in designing an
aerator is to predict the air demand and to determine the
size of aerators for different situations.

In the study of air demand, attention has been paid to
model-prototype studies. The relevant parameters
which affect the aeration process are determined to
develop design formulas based on simplified
assumptions. However, these formulas have been
generated under special geometries and hydraulic
characteristics, and thus can not be used for common
situations (Kavianpour and Rajabi, 2005). Therefore,
based on experimental and field measurements, an
Artificial Neural Network (ANN) is suggested to
estimate the air-demand downstream of gates in bottom
outlet conduits. ANN is known to be useful for
complicated engineering problems with nonlinear
relationships.

The Previous Studies on Aeration

Over the years attention has been given to the flow
aeration downstream of bottom outlet gates. The main
studies are based on experimental information,
obtained from physical models. The results are
presented in the form of aeration coefficient B, as
follows:

B=0,/0, (1)

in which, Q, and Q,, represent respectively the quantity
of air and water. The aeration coefficient is expressed
in terms of flow characteristics and the geometry of the
conduit. There are a number of expressions, which are
suggested to be used in predicting the aeration
coefficient and the quantity of air demand downstream
of outlet gates. However, there are still uncertainties in

applying these equations for every situation as they are
based on model studies with special geometries and
hydraulic characteristics (Kavianpour and Rajabi,
2005).

The U.S. Army Corps of Engineers (USACE) suggests
the use of various design assumptions to arrive at the
size of air vents. The method of computing air demand
for regulating gates is based on the fact that maximum
air demand for free surface discharges occurs at about
80% of gate openings (Pine Flat Dam=50% opening,
Tygart Dam=83.3% opening) (USACE, 1988). By
assuming a contraction coefficient of 0.8 for a 45° leaf
bottom and the maximum air velocity of 45m/sec to
90m/sec within the air vent, the cross sectional area of
the vent can be calculated.

In 1943, Kalinske and Robertson reported their results
on air demand in situations when a hydraulic jump is
formed in the downstream conduit (Vogl et al, 1988).
Based on their results, the aeration coefficient,f3, in the
condition of a hydraulic jump was suggested as a
function of Froude number Fr, in the form of:

B = 0.0066(F,—1)"" )

Moreover, for a free surface flow, in a partially full
conduit with no hydraulic jump, the following
relationship was suggested:

)1.06

B =003(F,~1 (3)

A similar equation was also suggested by Campbell and
Guyton (1953) as:

B =0.04(F,—1)"" 4)

To establish and check the air demand design criteria
for air vents downstream of bottom outlet gates and to
collect enough data for the training of the neural
network, study was conducted on several physical
models of outlet gates. These models have been
constructed and studied at the Water Research Institute
of Iran. The data also included the results of studies
made by Kavianpour (2001, 2005). In his works, the
variation of air demand with the flow condition and the
geometry of aeration system were studied. Also, two
different mechanisms for flow aeration, introduced by
Kavianpour (2003), were taken into account in the
present study (Kavianpour, 2003).
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Artificial Neural Networks

Neural networks are information-processing units
originally intended to simulate the performance and
characteristics of the human brain. They are composed
of simple elements (neurons) connected to each other,
which operate in parallel and in layers, inspired by
biological neurons system. Neural networks can be
trained to solve difficult problems. Therefore, they are
useful in solving complex functions in complicated
engineering problems with various types of variables
and nonlinearity.

Neural networks can be trained by supervised or
unsupervised training methods to simulate a particular
function by adjusting the values of each connection.
Neural networks are usually adjusted or trained, so that
a particular input leads to a specific target output.
According to Figure 1, the network is adjusted based on
the comparison of the output and the target. The
process will continue until the network output matches
the target. Typically, many such pairs of input-target
are used to train a network in a supervised learning
(Hagan et al, 1996; Haykin, 1998).

From mathematical point of view, artificial network is
a vector transforming which projects a vector from n to
m dimensions. The architecture of a network consists
of;

e Number of layers in a network;

e  Number of neurons in each layer;

e Transfer function of neurons; and

e how the layers are connected to each other.

Aside from the number of the neurons in a network's
output layer, the designer selects the number of neurons
in each layer. Each layer in a network has a weight
matrix, a bias vector, and an output vector. One of the

limitations of competitive networks is that some
neurons weight vectors may start far from any input
vector and never win the competition. The result is that
they never perform a useful function. Therefore, biases
are used to give these neurons an advantage over
neurons that win often.

Generally, in order to simulate a nonlinear relationship
between inputs and outputs, a nonlinear transfer
function is required. These functions show how an
ANN defines a system function and generate output.
There are different kinds of functions of which, the
most important are as follows;

Threshold-logic functions
Hard-limit functions

Continuous functions (Sigmoid)
Radial-basis or Gaussian function

Multilayer networks often use the log-sigmoid transfer
function as follows;

-1
r= %] +e %) )

where, a is constant, and X and Y are the sum of input
and output, respectively. This function generates
outputs between zero and one. However, if the inputs
consist of zero values, multilayer networks may use the
hyperbolic tangent sigmoid transfer function to
improve their performance. This function varies
between two symmetric extremes. The two extremes
are normally bounded between —1 and +1. For large
values of X, these functions have positive derivatives.
Since in this study, inputs i include zero values, the
tangent sigmoid function with different parameters was
applied to generate outputs.

Target

Nearal Network

Input (Called Weights)

Between Neurons

Including Connections

Compare

Qutput

Adjusted
Weights

Figure 1- Algorithm of the neural network
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Back Propagation Neural Networks

Back propagation neural network is one of the most
widely used techniques that can approximate any
function with a finite number of discontinuities by
giving sufficient neurons in hidden layers (Figure 2).
Generalizing the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable
transfer functions creates back propagation. Input
vectors and the corresponding target vectors are used to
train a network for approximating (nonlinear or
regression) function. The implementation of the back
propagation, updates the network weights and biases,
so that the performance function decreases more
rapidly.

The back propagation computes nonlinear multi-layer
networks in either batch mode or incremental mode.
Batch training of a network proceeds by making weight
and bias changes based on an entire set of input vectors
(Rajabi, 2004; Vogl et al, 1988). Incremental training
changes the weights and biases of a network as needed
after presentation of each individual input vector.
Incremental training is sometimes referred to as "on
line" or "adaptive" training. This process can be used
with a number of different optimization strategies. Each
algorithm has a different computation and storage
requirement.

The architecture of a multi-layer network is not
completely constrained by the problem to be solved.
The number of inputs to the network is constrained by
the problem, and the number of neurons in the output
layer is constrained by the number of outputs required
by the problem. However, the number of layers
between network inputs and the output layer and the
sizes of the layers are selected by the designer. The

back propagation algorithm can be summarized as

follows;

e Set all weights, biases, weight modifiers and bias
modifiers to random values in the desired ranges.

e Scale and present input vector to the input layer.

e Calculate input vector of the hidden layers

e Determine output vector and continue the
procedure for all layers to obtain output vector.

e Calculate the error vector and total error to check
the convergence:

e Calculate the weight and bias modifiers

e Modify weights and biases in the output layer:

e Back propagate the error in the hidden layers of the
network, modify weights and biases, calculate
input vector and reiterate the process again.

The adaptive algorithm is used to find out the best
network architecture and as mentioned before the
supervised learning procedure is employed for training
the network. The network error is computed based on
RMS standard formulation and is propagated into the
network until convergence is reached.

Processing the Data

There are a number of parameters, which are important
in determining the air demand downstream the outlet
gates. These parameters are the effective head, the
geometry of the gate, the gate opening, the flow
discharge, the cross sectional area of the conduit on the
upstream and downstream of the gate, and the
turbulence intensity of the flow. The analytical solution
may not be easily obtained and usually they contain
considerable errors (Kavianpour and Rajabi, 2005).
Therefore, a back propagation neural network was used
to process these variables for predicting the quantity of
air demand. The computational procedure can be
expressed as follows:

Qutput Layers

Propagation
of
Activations

Propagation

of
Errors

Figure 2- Back propagation network topology

IBAK 130 o0 o)Ladd @53 Jlw o) T @)lis Cl8xaa3
Volume 1, No. 3, Fall 2005 (IR-WRR)

4 ©\)



e  Network training based on the input and
output data

The data was based on laboratory experiments
performed at Water Research Institute of Iran. The
results were based on the experimental results of outlet
conduits, which were collected from the physical model
studies of Jegin, Jareh, Alborz, Kosar, and Karkheh
dams in Iran. Full sets of data and their variation can be
found in the work of Rajabi (2004). Training of the
model was completed with a collected series of 209
pairs of input and target vectors. Since it was not
possible to measure the turbulence intensity in the
performed experiments, the model used only five
neurons for input layers which include the effective
head, water discharge, the area of the gate, and the gate
opening. Based on the results of Kavianpour (2003),
the cross sectional area of the conduit upstream and
downstream of the gate is considered by the choice of 0
or 1 for a neuron. If the aeration after a gate is just from
its upper surface or from all around the jet the value
for this neuron would be 1 and 0 respectively
(Kavianpour, 2003).

o Selection of architecture (number of hidden
layers, processing units and unit interaction)

In this study Levenberg-Marquardt algorithm was used
due to its fast convergence and accurate training as a
suitable algorithm for problems of having function
approximation with a few hundred weights (Hagan and
Menhaj, 1994).

Usually, the best architecture for a network depends
upon the problem involved. In nonlinear networks the
selection of more neurons in the hidden layer will give
rise to a more powerful network. In this work, the
number of hidden layers was first fixed to one and as
the learning process was progressed, more and more
neurons were added to the hidden layer until
convergence was achieved. For a more rapid
convergence, this scheme was developed for more
hidden layers with equally increasing the number of
neurons in the layers to obtain the best suitable
architecture. This is important if the network does not
converge for a number of neurons and a certain number
of learning cycles under a predefined error gradient
tolerance.

A three-layer network, 7-6-1 with log-sigmoid (7
neurons) and tan-sigmoid (6 neurons) transfer function
in the hidden layers and a linear transfer function in the
output layer is used for this function approximation
(regression) problem. When there are zero values
within the input data, the tangent hyperbolic
nonlinearly could work better than sigmoid in the
hidden layers. In such cases the sigmoid transfer
function may generate zero values and so it will not let

the network to learn well. Therefore, in this study the
tangent hyperbolic sigmoid function was used for
approximation.

One problem that occurs during the training is over-
fitting regularization. In this study the Levenberg-
Marquardt training algorithm were modified to produce
well generalized networks and to reduce the difficulty
of determining the optimum network architecture
(Foresee and Hagan, 1997; Hagan and Menhaj, 1994).
The algorithm generally works well when the network
inputs and targets are so scaled that they fall
approximately in the range (-1, 1). Therefore, a
function was used to perform the scaling network
inputs and targets and to normalize the mean and
standard deviation of the training set. To convert
outputs back into the same units of those original
targets, a function was also required. Using the
algorithm for generalization, it is important to run the
algorithm until the effective number of parameters is
converged.

Results and Discussion

In this study, neural network was used to predict the
quantity of air required downstream the outlet gates.
The results are shown in Figures 3 to 6. Figure 3
shows that the outputs follow the targets reasonably
well. The regression parameter of 0.992 shows a very
good agreement between the input and target data. In
this figure, the line A=T refers to the ideal condition of
output=target which is very close to the best fit line.

The network selected a random test data that was used
for model validation purposes. This includes simulating
the model for these data and computing the residuals
from the model when applied to these data. This would
be a good justification for the model, when its output is
compared to the measured one on a data set that had
not been exposed to the network. The set of 20 random
data, which was used to test the model, is called the
Validation Data. Figure 5 shows the outputs which are
plotted versus the validation test sets. The results show
a regression of 0.995 which is well comparable with the
results of Figure 3.

To improve the generalization in the neural network,
the method of regularization parameters based on the
Bayesian framework of MacKay was used for this
study (MacKay, 1992). The algorithm will run until the
effective number of parameters has converged. It can
also be converged if the sum squared error (SSE) and
sum squared weights (SSW) are relatively constant
over several iterations. Figure 5 show the results of this
model. According to the figure, after convergence, the
number of epochs has reached 222 and SSE equals
0.437.
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Best Linear Fit A= (0.998) T + (-0.0429)
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Figure 3- Graphical output for entire data set (A=Output and T=Target)
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Figure 4- Graphical output for validation data set
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Training SSE=0.4379
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Figure 5- Training Result for neural network when maximum MU reached.

Figure 6 illustrates the results of the graphical output  with the regression of 0.977 shows a good indication of
for validation data set. In this figure the best linear fitis  the ability of the present neural network for predicting
indicated by a dashed line and the perfect fit (output  the quantity of air demand downstream the bottom
equals targets) is indicated by the solid line. The result  outlet leaf gates.

Best Linear Fit A= (0.937) T + (-0.0561)

o

R=0.977 o

A (Test-Target)

- Beegt Linear Fi

i a0 Ll 50 B0

T (Test-Target)

Figure 6- Graphical output for test data set.
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Conclusive Remarks

In this paper, application of Neural Network for the
design of aerators in bottom outlet conduits was
presented. The main factors affecting the process of air
entrainment are the flow velocity, flow discharge, the
sizes of the conduit and aerator, and the effective head
of water. These parameters form the input data and the
quantity of air entrainment was the output of the model.
The model was trained and modified using the field
measurements and the physical model studies of
bottom outlet conduits. The study revealed the
efficiency and capability of neural network in modeling
nonlinear behavior of flow aeration downstream the
outlet gates. The previous studies of Kavianpour (2005)
with a set of 209 data showed that a wide range of
average error from 111% to 569% may be expected in
using the previous expressions reported by many
investigations (Kavianpour and Rajabi, 2005).
However, for the same set of input and target data, the
neural network predicted the air demand with a
regression parameter of 0.992 and sum squared error of
0.43. Therefore, it can be concluded that the model is
capable of simulating the process reasonably well,
compared with those of previous investigations.
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