بررسی حذف نیترات از محیط آبی در فرایند گیاه پالایی توسط سنبل آبی (Eichhornia crassipes)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد /مهندسی عمران- محیط زیست، دانشگاه پیام نور شیراز.

2 دانشیار /گروه فنی و مهندسی، دانشگاه پیام نور، تهران، ایران

چکیده

حفظ منابع آبی و حفاظت آنها از آلودگی از درجه اهمیت زیادی در چرخه طبیعی زندگی ما برخوردار است، نیترات به عنوان یکی از مهم ترین منابع آلودگی آب، تهدیدی جدی برای اکوسیستم های آبی محسوب می شود و با توجه به حلالیت بسیار بالای آن، خارج کردن آن از آب فرآیندی بسیار پرهزینه محسوب می شود، ارائه یک روش مطمئن که ضمن رفع آلودگی کم هزینه، سریع وآثار جنبی نامطلوب برای سلامت محیط نداشته باشد بسیار ضروری است، هدف از این مطالعه تعیین توان و ظرفیت پالایندگی سنبل آبی جهت حذف نیترات از محیط آبی می باشد عواملی مانند غلظت اولیه نیترات، زمان تماس، جرم جاذب، pH، و حضور سایر یونهای رقابتی از جمله سولفات روی جذب نیترات، مورد مطالعه قرار گرفت. نتایج نشان داد که بهترین راندمان حذف نیترات بیشتر از %99 در شرایط اپتیمم (زمان ماند30ساعت، دوز جاذب سه بوته (15 ساقه) و (4/6 = pH) اتفاق افتاد. ضمناً راندمان حذف نیترات در حضور یونهای سولفات کاهش نمی یابد.، با افزایش غلظت اولیه از30 به 150 میلی گرم در لیتر نیترات راندمان حذف تغییری محسوسی نمی کند و با افزایش جرم جاذب راندمان حذف از %96/67 به%100 افزایش یافت و زمان ماند کمتری جهت تعادل بدست می آید فرآیند جذب نیترات از ایزوترم لانگمویر (1=R2) تبعیت می نماند در نهایت می توان نتیجه گرفت که سنبل آبی یک گیاه امیدوارکننده با عملکردهای عظیم به عنوان یک پالایشگر می تواند در راه رفع مشکلات زیست محیطی کمک موثری باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Nitrate Removal from the water in plant purification process by using Eichhornia crassipes

نویسندگان [English]

  • G Avatefinezhad 1
  • E Asrari 2
1 MSc. Graduate, Civil Engineering- Environment, Department of Engineering, Payame Noor University, Shiraz, Iran
2 Associate Professor, Department of Engineering, Faculty of Civil Engineering, Payame Noor University, Shiraz, Iran
چکیده [English]

Water resources conservation and protect them from the pollution, has a high importance in natural cycle of our life. Nitrate, as one of the important resources of water pollution, is a serious threat to aquatic ecosystems, and due to its high solubility, extraction of it from the water is a costly process. Providing a reliable, low cost and fast method is necessary to eliminate pollution. The study has tried to determine the refining potential and capacity of Eichhornia crassipes in order to remove nitrate from the water. Factors such as initial concentration of nitrate, contact time, absorbent mass, pH and the presence of other competing ions such as sulfate on nitrate absorption have been studied. The results showed that the best efficiency of nitrate removal, more than 99%, in the optimum condition (the retention time of 30 hours, absorbent dose 3 plants (15 stem) and pH=6.4) was occurred. In addition, the efficiency of nitrate removal by the presence of sulfate ions does not reduced. By increasing the initial nitrate concentration, from 30 to 150 mg/L, there is no any significant change in removal efficiency. Actually, by increasing absorbent mass, removal time was increased from 67.96% to 100%. The process of nitrate absorption followed by Langmuir isotherm (R2=1). However, the results showed that Eichhornia crassipes, a promising plant with great functionally, can be used as a refiner for removing nitrate as simple, efficient and low cost method.

کلیدواژه‌ها [English]

  • absorbent
  • Eichhornia crassipes
  • Nitrate
  • Phytoremediation

Asghar Zadeh F, Amooei A, Ehram pour M, Ghaneian M, Faraji H (2013) The study of conala waste efficiency in the removal of cadmium from the aqueous solutions. Sixteenth National Conference of Environmental Health. Tabriz. Tabriz University of Medical Sciences (In Persian)

Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw A, eds. Heavy metal tolerance in plants – Evolutionary aspects, CRC Press, 155-177

Bhatt K (1997) Occurance and distribution of Nitrate and pesticides in Bowdle aquifer, South Dakotau (USA). Environmental Monitoring and Assessment M. (2005) Nitrates leaching from agricultural land in Hmadan, western Iran. Agriculture, Ecosystem and Environment 110 (3-4): 210-218

Brix B (1993) Waste water treatment in constricted wetlands: system design, removal process and treatmentperformance. 9-22. In: Moahiri GA, ed. Constructed wetlands for water Quality Improvement. CRC press, Boca Raton

Center T, Spencer NR (1981) The phenology and growth of water hyacinth (Eichhornia crassipes (Mart) Solms) in a eutrophic north central Florida lake. Aquatic Botany 10:1-32

Dermentzis KA, Christoforidis, Valsamidou E (2011) Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. J. Environmental Sciences 1 (5):112-119

Edwards D, Musil CJ (1975) Eichhornia crassipes in South Africa. A general review. Journal of the Limnological Society of Southetn Africa 1:23-27

Falahi F, Ayati B, Ganji Doost H (2012) Nitrate removal by the phytoremediation process in experimental scale. Journal of Water and Wastewater 1:P 57 (In Persian)

Ferasati M, jafar Zadeh S, Boroumand Nasab H (2012) The use of plant nano-absorbent to remove nitrate from aqueous solutions. The study of Iran Water Resources (3):45-56 (In Persian)

Fox LJ, Struik PC, Appleton BL, Rule HJ (2008) Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms). Water, Air, and Soil Pollution 194 (1-4):199-207

Gilchrist M, Winyard PG, Benjamin N (2010) Review; Dietary nitrate – Good or bad? Nitric Oxide 22:104–109

Hameed BH, El-Khaiary MI (2008) Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared frombamboo by K2CO3 activation and subsequentgasification with CO2. Journal of Hazardous Materials 157:344–351

Hazrat A, Ezzat K, Muhhammad Anwar S (2013) Phytoremediation of heavy metals, Concepts and applications. Chemosphere 91(7):869–881

Heidari AH, Younesi Z, Mehraban (2009) Removal of Cd(II), Ni(II), and Pb(II) ions in an aqueous solution by chemically modified nanoporous. MCM-41, 1:25-33

Imamoglua M, Yıldıza H, Altundaga H, Turhanb Y (2015) Effective separation of cadmium (II) from aqueous solution through a carbon shell (DHHC). Journal of Dispersion Science and Technology 36(2):284-290

Ineel IL (2000) Idaho national engineering and environmental laboratory. U.S. Department of Energy, Chicago, 289-301

Ismail AS, Abeal-Sabour RM, Rad W (1996) Water hyacinth asindicator for heavy metal Pollurion in different selected sites and waterbodies around greater Cairo. Egypt Journal of Soil Science 36:343-354

Iyer PVR, Rao TR, Grover PD (2002) Biomass thermo chemical characterization, Indian Institute of Tech. New Dehli, 165-169

Kutty SRM (2012) Nutrients removal from municipal wastewater treatment plant effluent using Eichhornia Crassip. Word Academy of Seience. Engineering and Technology 3:13-15

Lebeau T, Braud A, Je'ze'quel K (2007) Performance of bio-augmentation-assisted phytoextraction applied to metal contaminated soils. Environmental Pollution 153 (3):497-522

Lin Y, Jing S, Wang T, Lee D (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollut 119 (3):413-420

Madahi Arefi h, Darvish M (1995) Optimal utilization of interior water capacity of desertification bearing. The Second National Conference and Various Methods of Desertification, 121-127 (In Persian)

Malakouti MJ (2002) Investigation of the origin and methods of reducing the contaminants of nitrate and cadmium in paddy fields north. Final Report, Soil and Water Research Institute, Tehran, 78-89 (In Persian)

McCutcheon SC, Schnoor JL (2003) Phytoremediation transformation and control of contaminants. John Wiley and Sons, New York, 33-38

Mohseni A (1996) Health problems of nitate in drinking water and health risks associated with nitrate in drinking water. Journal of Mazandaran University of Medical Sciences (15):15 (In Persian)

Morikawa H, Ozgur E (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553-1558

Mosleh Arani A, Khosravi M, Azimzadeh, Hsodaei Zadeh H, Sepahvand A (2014) The study of Mytus Communis and Pinus britia in cadmium absorption. Environmental Studies 40 (1):28 (In Persian)

Nanda Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoxtraction: The use of plants to remove heavy metal from soils. Environmetal Science and Technology 29:1232- 1238

Nolan BT (2001) Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water 39(2):290-299

Pivetz BE (2001) Phytoremediation of contaminated soil and groundwater at hazardous waste sites. EPA Groundwater Issue, EPA/540/S-01/500, USA

Rahmani H, Kalbasi M, Hajrasooliah Sh (1990) The plant pollution by the lead of vehicles within the some highways of Iran. Jornal of Ecology 26:77-83 (In Persian)

Sadeghpour H, Torabian A, Mehrdadian N (2000) Nitrogen and hosphrous removal from municipal wastewater by constructed wetlands. J. of Environmental Studies 26 (25):11-22

Sedaghat H (2013) Nitrate removal from the water using the sunflower and corn stem (stalk). National Institute of Talents, 15-19 (In Persian)

Shahmoradi M, Amin Zadeh B, Torabian A (2012) The nitrate removal from groundwater using the active carbon obtained from rice barn, the active carbon obtained from food industry sludge, commercial active carbon and natural charcoal. The First National Conference on Ways to Achieve the Sustainable Development. Ministry of Interior, Tehran, 8-14 (In Persian)

Sultan ME, Rashed MN (2003) Laboratpry study on the survival of water hyacinth under several conditions of heavy metal concentration. Advance Environmental Researches 7:327-334

Sundaralingam T, Gnanavelrajah N (2014) Phytoremediation potential of selected plants for Nitrate and Phosphorus from ground water. International Journal of Phytoremediation 16 (3):275-284

Tehrani-Bagha AR, Nikkar H, Mahmoodi NM, Markazi M, Menger FM (2011) The sorptionof cationic dyes onto kaolin: Kinetic, isotherm andthermodynamic studies. Desalination 266:274–280

WHO (2006) Guidelines for drinking water quality. 3rd ed, Geneva, WHO, 190-191

World Health Organization (2008) Guidelines for drinking-water quality. 3rd Ed, Incorporating the First and Second Addenda, Volume 1 Recommendations, WHO, Geneva

Zarei A, Mostafa Poor F, Bazr Afshan A, Sadeghi M (2008) The nitrate removal from the drinking water using the active carbon obtained from pine cones. Eleventh national conference of environmental health. Zahedan. Zahedan University of Medical Sciences, 31-35 (In Persian)