کارآیی روش های پس پردازش آماری در بهبود پیش بینی ماهانه بارش مدل MRI-CGCM3 در خراسان رضوی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار /گروه پژوهشی تغییر اقلیم، پژوهشکده اقلیم شناسی، مشهد، ایران

2 کارشناس پژوهشی/ گروه پژوهشی تغییر اقلیم، پژوهشکده اقلیم شناسی، مشهد، ایران.

3 دانشجوی دکتری / اقلیم شناسی، ‌دانشگاه حکیم سبزواری، سبزوار، ایران.

4 دانشجوی دکتری /اقلیم شناسی، ‌دانشگاه حکیم سبزواری، سبزوار، ایران.

چکیده

پیش بینی ماهانه بارش یکی از موضوعات چالشی در حوزه هیدرواقلیم می باشد. از آنجا که استفاده عملیاتی از مدل های عددی پیش بینی ماهانه در کشورمان به اندازه مدل های کوتاه مدت نمی باشد، لذا تاکنون مدل های پیش بینی عددی ماهانه در کشورمان عملیاتی نشده اند؛ دو دلیل مهم این مشکل عدم دسترسی به کد مدل دینامیکی جهانی و عدم وجود داده های شرایط اولیه برای آغازگری آنها می باشند. این وضعیت موجب می شود تا هر ساله به دلیل عدم وجود سامانه پیش بینی فصلی قابل اعتماد، خسارات سنگینی به بخش های منابع آب، کشاورزی و منابع طبیعی کشورمان وارد گردد. به همین دلیل در این تحقیق برونداد مدل پیش بینی فصلی دینامیکی MRI-CGCM3 که هم اکنون در سازمان هواشناسی ژاپن برای پیش بینی ماهانه متغیرهای هواشناسی استفاده می شود، به سه روش رگرسیون چندگانه، میانگین متحرک و شبکه عصبی مصنوعی بر روی ایستگاههای سینوپتیک مشهد، سبزوار و تربت حیدریه پس پردازش شدند. بارش پس پردازش شده به روش های یاد شده با برونداد مستقیم مدل (DMO) مقایسه گردیدند. نتایج نشان می دهند که اعمال پس پردازش آماری بر روی برونداد مستقیم مدل موجب بهبود پیش بینی ماهانه بارش بین 6 درصد در روش میانگین متحرک تا 20 درصد در روش رگرسیون چند متغیره می باشد و کارآیی روش رگرسیون چندگانه به مراتب از دو روش میانگین متحرک و شبکه عصبی بهتر است. بر اساس منحنی ROC، پیش بینی های در محدوده نرمال تا بیش از نرمال از صحت بیشتری برخوردار می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance of statistical post processing techniques in improvement of monthly precipitation forecast of MRI-CGCM3 model over Khorasan-Razavi

نویسندگان [English]

  • I. Babaeian 1
  • M. Karimian 2
  • R. Modirian 2
  • F. Bayatani 3
  • E. Fahiminejad 4
1 Assistant Professor, Climate Change Division, Climate Research Institute (CRI), Mashhad, Iran
2 expert in charge of climate modeling/climate research institute
3 PhD Candidate, Hakim Sabzevari University, Sabzevar, Iran.
4 PhD Candidate, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

Precipitation forecast in monthly to seasonal time scales is one of the challenges facing the Iran meteorological organization. It is also one of the fundamental needs of water resources management in agriculture, industry and drinking water sectors. Development of numerical prediction in monthly time scale is much less than numerical short term prediction in Iran; in this regard, despite to short term weather prediction, there is no operational numerical monthly to seasonal forecast model in Iran. Lack of a reliable operational seasonal forecast system cause huge damages to water resources, agriculture and natural resources sectors in all country regions. MRI-CGCM3 is the operational dynamical seasonal forecast model which is being used in Japan Meteorological Administration (JMA). In this paper output of MRI-CGCM3 was post processed using three different techniques of multiple regressions (MR), moving average (MA) and artificial neural network (ANN) over three sites of Mashad, Sabzevar and Torbat-e-heydarieh. Post processed monthly precipitation obtained from three different methods were compared with Direct Model Output (DMO).Performance of monthly forecast has been increased by 6% up to 20% when applying post processing techniques to direct model output. Result confirmed that multiple regressions (MR) techniques have the highest performance in improvement of monthly forecast skill over selected stations among all three post processing techniques.

کلیدواژه‌ها [English]

  • Numerical Prediction
  • MRI-CGCM3
  • post processing
  • Precipitation
  • Khorasan Razavi

Akhavan S, Abedi J, Mousavi F, Abaspoor K, Afyoni M, Eslamian S (2010) Estimation of blue and green water using SWAT in Hamedan sub-basin. Journal of Water and Soil Science Article#53 (In Persian)

Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. Part I of Journal Atmospheric Science 31:674–701

Azadi M, Shirgholami M, Hojam S, Sahraeean F (2011) Post processing WRF model output for daily precipitation in Iran. Iran-Water Resources Research 7(4):71-80 (In Persian)

Amiri F, Charmi M, Enayt L (2011) Evaluation ORYZA 2000 model in scarcity of irrigation and nitrogen fertilizer (calibration and validation). Journal of Water and Soil 25(4):757-769 (In Persian)

Babaeian I, Karimian M, Modirian R (2013) Statistical post processing MRI-CGCM3 output for seasonal precipitation forecast over Khorasan-Razavi province. Iranian Journal of Geophysics 7(3):119-133 (In Persian).

Bakhshaii A, Stull R (2009) Deterministic ensemble forecasts using gene expression Programming. Weather and Forecasting 24:1431-1451 (In Persian)

Durrant T H, Woodcock F, Greenslade D J M (2008) Consensus forecast of modeled wave parameters. Australia Bureau of Meteorology Technical Note 16

Engel C (2005) Hourly operational consensus forecasts (OCF). BMRC Research Report 115:107

Fathi Margh A, Mahdeian MH (2010) Predicting winter precipitation using indicators beyond the neural network method in Urmia Lake. Watershed Management Research 85:42-52 (In Persian)

Finnis J, Hsieh W W, Lin H, Merryfiled W (2011) Nonlinear post-processing of numerical seasonal climate forecast. Journal of Atmosphere-Ocean 26:1-34

Gholabi M, Akhond A, Radmanesh F (2014) Comparing the performance of different algorithms in neural network modeling case study seasonal rainfall selected stations in Khuzestan province. Scientific Journal of Management System 13(30):151-169 (In Persian)

Halabian A, Darand M (2012) Precipitation forecast over Isfahan using neural networks. Journal of Applied Researches in Geographical Science 12(26):47-63 (In Persian)

Hasanzadeh Y, Abdi Kordani A, Fakherifard A (2012) Forecasting drought by using Genetic Algorithm and wavelet-neural network hybrid model. Journal of Water & Wastewater 3:48-59 (In Persian)

Johnson C, Swinbank R (2009) Medium-range multi-model ensemble combination and calibration. UK met-office Technical Note 517:31

Kay M, MacGill I (2010) Improving weather forecasts for wind energy applications. In: Proc. of 17th National Conference of the Australian Meteorological and Oceanographic Society, 27-29 January, Canberra

Libonati R, Trigo I, DaCamara C (2008) Correction of 2-m temperature forecasts using Kalman filtering technique. Atmospheric Research 87:183-197

McCollor D, Stull R (2008) Hydrological accuracy enhancement via post processing of numerical weather forecasts in complex terrain. Weather and Forecasting 23:131-144

Mostafavi Darani S M, Koshhal Dastjerdi J, Stone R, Babaeian I, Abbasi F (2015) Linkage a general circulation model with a crop model to forecast barley yields: a case study for Isfahan, Iran. International Journal of Ayer 2:451-469 (In Persian)

Pezzi L P, Kayano M T (2008) An analysis of the seasonal precipitation forecasts in South America using wavelets. International Journal of Climatology 29:1560-1573

Rastgu Z, Azadi M, Hojam S (2010) Post processing WRF model output for level 10- m wind velocity and level 2-m temperature by using Palayeh nonlinear Kalman. Journal of Climate Research 1(3 and 4):93-106 (In Persian)

Shimizukawa J, Chen C Y, Iba K (2009) Multi-regression model for peak load forecast in demand side like university campus. In: Proc. of the International Conference on Electrical Engineering, 5-9 July, China

WMO (2006) Standardized verification system (SVS) for long-range forecasts (LRF), new attachment to manual of GDPFS (WMO-No. 485). Vol.1, Final Report of the Joint Expert Teams on Long-Range Forecasting, ECMWF, April 2006

Woodcock F, Engel C (2005) Hourly operational consensus forecasts (OCF). Weather Forecasting 20:101-111

Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the meteorological research Institute: MRI-CGCM3-Model description and basic performance. Journal of the Meteorological Society of Japan 90:23-64

Zahraei B, Roozbahani A (2008) Clustering meteorological signal due to changes in precipitation (Case Study: rainfall prediction of Sistan va Baluchestan province. Iranian Journal of Watershed Management Science and Engineering 1(2):20-29 (In Persian)