تحلیل مکانی گروهی و تحلیل مکانی فازی کیفیت منابع آب زیرزمینی دشت شهربابک به منظور اهداف شرب و کشاورزی

نوع مقاله: یادداشت فنی (5 صفحه)

نویسندگان

استادیار /گروه علوم و مهندسی آب، دانشگاه ولیعصر (عج) رفسنجان، ایران.

چکیده

در ایران به دلیل محدودیت و ناپایداری منابع آب سطحی، به طور گسترده‌ای از آب‌های زیرزمینی برای اهداف شرب، آبیاری و صنعت به عنوان منبع آب جایگزین استفاده می‌شود. این پژوهش با هدف تدوین رویکردی برای ارائه پهنه‌های کیفی آب زیرزمینی دشت شهربابک براساس ابزارهای نوین پهنه‌بندی مکانی فازی و تحلیل گروهی مکانی در محیط GIS انجام شده است. بر مبنای نتایج تحلیل فازی به ترتیب 4/21 و 5/40 درصد از آب‌های آبخوان دارای کیفیت مطلوب برای اهداف شرب (واقع در شرق و جنوب شرقی) و برای اهداف کشاورزی و آبیاری (قسمت-های شمالی) می‌باشند. تحلیل گروهی نشان داد که چهار نوع آب آبیاری شامل C3-S1، C3-S4، C4-S1 و C4-S2 در آبخوان دشت شهربابک مشهود است. طبقه C4S1 با شوری زیاد و خطر سدیم کم، نوع غالب آب در منطقه مورد مطالعه بود. نتایج این مطالعه نشان دادند که تحلیل داده-های کیفی آب با استفاده تحلیل مکانی فازی و تحلیل گروهی در GIS می‌تواند به روشن شدن فاکتورهای کنترل کننده کیفیت آب زیرزمینی کمک کند. بنابراین حفاظت از منابع آب زیرزمینی به منظور برنامه‌ریزی و مدیریت منابع، امری ضروری و بحرانی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial group analysis and fuzzy spatial analysis of Shahr-e-Babak plain groundwater quality for drinking and irrigation

نویسندگان [English]

  • H. Riahi Madvar
  • A. Seifi
Assistant Professor, Dept. of Water Engineering, Vali-e-Asr University, Rafsanjan, Iran.
چکیده [English]

Groundwater is frequently utilized as a water resource for drinking, irrigation, and industry purposes in Iran due to limited and unreliable surface water reservoirs. The main aim of this study is to develop systematic approach in GIS inference fuzzy system management to analysis and mapping groundwater quality of Shahr-e-Babak plain located in northwest of Kerman Province. The analysis show that 21.4 and 40.5 percent of Shahr-e-Babak plain groundwater have suitable quality for drinking in east and southeast and for irrigation in north and northeast, respectively. Grouping analysis also showed four types of irrigation water such as C3S1, C3S4, C4S1 and C4S2. C4S1 type of high salinity to low sodium hazard was the most dominant in the study area. Based on the results it’s declared that using spatial fuzzy and grouping analysis in GIS can obviously clarify controlling factor of ground water quality of aquifers. So, protecting groundwater from pollution is crucial for water resources planning and management.

کلیدواژه‌ها [English]

  • Shahr-e-Babak plain aquifer
  • Zoning
  • Fuzzy analysis
  • Group analysis
  • Irrigation water quality

Annapoorna H, Janardhana MR (2015) Assessment of groundwater quality for drinking purpose in rural areas surrounding a defunct copper mine. Aquatic Procedia, 4:685-692

Asikkutlu B, Akkoz C, Ozturk BY, Gumus NE (2015) Evaluation of water quality using fuzzy logic in Beykavagi Pond, Turkey. Journal of Selcuk University Natural and Applied Science, 4(1): 132-152

Dahiya S, Singh B, Gaur S, Garg VK, Kushwaha HS (2007) Analysis of groundwater quality using fuzzy synthetic evaluation. Hazard Mater 147:938–946

ESRI (2010) ArcGIS 10.2 Software and user manual. Environmental Systems Research Institute, Redlands, CA. http://www.esri.com/

Fu-Cheng L, Xue-Zhao H (2013) Application of fuzzy c-means clustering for assessing rural surface water quality in Lianyungang City. In: Proc. of Measuring Technology and Mechatronics Automation (ICMTMA,2013), IEEE,Madrid, Spain , 5-7 Jun, 291-295

Gharibi H, Mahvi AH, Nabizadeh R, Arabalibeik H, Yunesian M, Sowlat MH (2012) A novel approach in water quality assessment based on fuzzy logic. Environmental Management, 112: 87-95

Kerman Regional Water Authority (2012) Groundwater studies of Shahe-e-Babak plain aquifer. 143 p

Keshavarz A, Khashei Seouki A, Najafi MH (2013) Locating of suitable area of pumping drinking water using FAHP method (Case Study: Birjand Aquifer). Water and Wastewater, 3: 135-142 (In Persian)

Kord M, Asghari-Moghaddam A (2015) Evaluation of drinking water quality of Ardabil plain aquifer by cokriging and fuzzy logic. Water and Soil Conservation, 21(5): 225-240 (In Persian)

Kumar NV, Mathew S, Swaminathan G (2010) A hybrid approach towards the assessment of groundwater quality for potability: a fuzzy logic and GIS based case study of Tiruchirappalli City, India. Geographic Information System, 2(03): 152

McKone TE, Deshpande AW (2005) Can fuzzy logic bring complex environmental problems into focus?. Environmental Science Technology, 39:42–47

Nakhaei M, Vadiati M, EsmaeiliFalak M (2014) Groundwater qualitative zoning of Varamin Plain for agricultural applications using Analytical Hierarchy Process method in GIS. Iran-Water Resources Research, 9(3): 94-98 (In Persian)

Natarajan Venkat K, Samson M, Ganapathiram S (2010) Multifactorial fuzzy approach for the assessment of groundwater quality. Water Resource and Protection, 2(6):597

Norouzian K, Tajrishy M, Abrishamchi A (2001) Water quality zoning of rivers by the technique of fuzzy clustering analysis. Computational Methods in Engineering (Esteghlal), 20(1): 55-68 (In Persian)

Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, northern Chile: a model and temporal localization of porphyry Cu mineralization. Economic Geology, 98: 1515-1533.

Sakizadeh, M (2016) Artificial intelligence for the prediction of water quality index in groundwater systems. Modeling Earth Systems and Environment, 2: 1-9

Venkatramanan S, Chung SY, Rajesh R, Lee SY, Ramkumar T, Prasanna MV (2015) Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea. Environmental Science and Pollution Research, 22(15): 11209-11223

WHO (World Health Organization) (2006) Guidelines for drinking water quality, 3rd edn. WHO, Geneva

Wilcox LV (1955) Classification and use of irrigation waters. US Department of Agriculture, Washington, p 969

Yan H, Zou Z, Wang H (2010) Adaptive neuro fuzzy inference system for classification of water quality status. Environmental Sciences, 22(12): 1891-1896

Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, 1:28– 44