مدل بهینه بار آلاینده در رودخانه کارون با تحلیل خسارت بارگذاری آلودگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس.

2 استاد گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس.

3 استاد گروه مهندسی عمران، دانشکده عمران، دانشگاه شهید چمران اهواز.

4 دانشیار گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس.

چکیده

مدیریت تخلیه بار آلودگی به رودخانه­‌ها نقش مهمی در بهبود کیفیت آب دارد. هدف این مقاله، ارائه روش جدید در مدل‎سازی تخصیص بار آلودگی مبتنی بر هزینه (C-WLA) با تعامل بین هزینه‌­های تصفیه در نقاط بارگذاری و خسارت آلودگی در نقاط برداشت جریان از سیستم رودخانه است. برای این منظور، مدل شبیه­‌سازی­ کیفی (MIKE11) با الگوریتم بهینه‌­سازی هوش ازدحامی ذرات (PSO) ترکیب می‌شود و کاربرد عملیاتی این مدل‎‌سازی در بخشی از رودخانه کارون نشان داده شده است. در گام اول هزینه‌­های تصفیه و خسارت بارگذاری آلاینده TDS در طول رودخانه برآورد ­شده و سپس با درک تأثیر سیاست تعامل بین هزینه تصفیه تخلیه‌­کننده‌­ها و خسارت بار آلودگی، الگوی بار بهینه و حد آستانه غلظت بهینه در نقاط کنترل سیستم رودخانه در طول یکسال به صورت ماهانه تعیین می‌­شود. نتایج نشان داد که مدل C-WLA کارایی لازم برای مدیریت تخلیه آلاینده TDS و دستیابی به اهداف بهینه­‌سازی در مدیریت کیفیت آب رودخانه را دارد. بطوری که مجموع هزینه­‌ها و خسارت‌­ها با حد آستانه غلظت بهینه 2450 میلی‌­گرم بر لیتر در نقاط برداشت جریان و با متوسط 17/85 درصد تصفیه بهینه در نقاط بارگذاری، حداقل شده و برابر 48/99 میلیون دلار بدست می‌­آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Waste Load Model in Karoon River with the Pollution Loading Loss Analysis

نویسندگان [English]

  • Bahman Fakouri 1
  • Jamal Mohammad Vali Samani 2
  • Hossein Mohammad Vali Samani 3
  • Mehdi Mazaheri 4
1 Ph.D. Candidate, Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
2 Professor, Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
3 Professor, Department of Civil Engineering, Shahid Chamran University, Ahvaz, Iran.
4 Associate Professor, Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The optimal managment of pollutants discharged into the rivers plays a critical role in improving water quality. In this paper, a new method is developed for Cost-based waste-load allocation (C-WLA) modeling with trade-off between the cost of treatment at loading points and the loss of pollution at the points of withdrawal from the river system. For this purpose, the qualitative simulation model (MIKE11) is coupled with Particle Swarm Optimization (PSO) algorithm. The model is applied to the Karoon River system. At the first step, the sum of treatment cost and loading damage of TDS pollutant was estimated in the river system. Then, with insights into the impacts of the trade-off policy between treatment cost of dischargers and pollutant load loss, optimal treatment percentages and optimal concentration threshold limit were determined in a monthly base and for one year. The results demonstrated that the C-WLA model has the good efficiency in managing the TDS pollutant, so that, the sum of the costs and losses is minimized at $48.99 million with optimal concentration threshold limit of 2450 mg/l at the discharge points and with an average of 17.85% of the optimal treatment at the loading points.

کلیدواژه‌ها [English]

  • River System Loss
  • Optimal Load Pattern
  • Karoon River
  • Simulation Model
  • Optimization Algorithm
Abbott MB, and Ionescu F (1967) On the numerical computation of nearly horizontal flows. Journal of Hydraulic Research 5(2):97-117
Afkhami M, Shariat M, Jaafarzadeh N, Ghadiri H, and Nabizadeh R (2007)  Regional water quality management for the Karun–Dez River basin, Iran. Water and Environment Journal 21(3):192-199
Afshar A, and Masoumi F (2016) Waste load reallocation in river–reservoir systems: Simulation–optimization approach. Journal of Environmental Earth Sciences 75(1):75-53
Afshar A, Masoumi F, and Sandoval Solis S (2018)  Developing a reliability-based waste load allocation strategy for river-reservoir systems. Journal of Water Resources Planning and Management 144(9):52-64
Ashtiani EF, Jamshidi S, Niksokhan H, and Ashtiani AF (2015) Value index, a novel decision making approach for waste load allocation. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 9(6):624-628
Burn DH, and Yulianti JS (2001) Waste-load allocation using genetic algorithms. Journal of Water Resources Planning and Management 127(2):121-129
Cardwell H, and Ellis H (1993) Stochastic dynamic programming models for water quality management. Water Resources Research 29(4):803-813
Delavar M, Morid S, and Moghadasi M (2015) Optimization of water allocation in irrigation networks considering water quantity and quality constrains, Case study: Zayandehroud Irrigation Networks .Journal of  Iran-Water Resources Research 11(2):84-96 (In Persian)
Eberhart R, and Kennedy J (1995) A new optimizer using particle swarm theory.  MHS'95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science Nagoya, Japan, 39-43 pp
Eberhart RC, and Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Springer 611-616 pp
Fakouri B, Mazaheri M, and Samani JM (2018) Management scenarios methodology for salinity control in rivers (case study: Karoon River, Iran). Journal of Water Supply: Research and Technology-Aqua 68(1):74-86
Farjoudi ZS, Moridi A, and Mousavi Nadoushani SS (2019) Applying bankruptcy approach in allocating point and non-point pollution in rivers. Journal of Iran-Water Resources Research 15(2):88-97 (In Persian) 
Huang G, and Loucks DP (2000) An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems 17(2):95-118
Jamshidi A, Samani JMV, Samani HMV, Zanini A, Tanda MG, and Mazaheri M (2020) Solving Inverse Problems of Unknown Contaminant Source in Groundwater-River Integrated Systems Using a Surrogate Transport Model Based Optimization. Journal of Water 12(9):2415-2441
Kanda EK, Kosgei JR, and Kipkorir EC (2015) Simulation of organic carbon loading using MIKE 11 model: A case of River Nzoia, Kenya. Water Practice and Technology 10(2):298-304
Karamouz M (2005) Waste-load allocation model for seasonal river water quality management: Application of sequential dynamic genetic algorithms. Journal of Scientia Iranica 12(2)-117-130
Kashefipour SM, and Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Research 36(6):1596-160
Khoshkam H, Saadatpour M, and Heidarzadeh N (2017) Single/multi waste load allocation in Gheshlagh River; Simulation-optimization approach. Journal of  Iran-Water Resources Research 13(2):99-114 (In Persian)
Li Y, and Huang G (2010) Dual-interval fuzzy stochastic programming method for long-term planning of municipal solid waste management. Journal of Computing in Civil Engineering 24(2):188-202
Liebman JC, and Lynn WR (1966) The optimal allocation of stream dissolved oxygen. Water Resources Research 2(3):581-591
Loucks DP, Revelle CS, and Lynn WR (1967) Linear progamming models for water pollution control. Management Science 14(4):166-181
Maas EV, and Hoffman GJ (1977) Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division 103(2):115-134
Mahjouri N (2015) Waste load allocation in rivers: A state of the art review and prospects for future studies. Journal of  Iran-Water Resources Research 11(2):117-134 (In Persian) 
McNeal B, and Coleman N (1966) Effect of solution composition on soil hydraulic conductivity. Soil Science Society of America Journal 30(3):308-312
Meysami R and Niksokhan MH (2020) Evaluating robustness of waste load allocation under climate change using multi-objective decision making. Journal of Hydrology 588(2020):1-10
Mujumdar P and Sasikumar K (2002) A fuzzy risk approach for seasonal water quality management of a river system. Water Resources Research 38(1):1-9
Munns R and Termaat A (1986) Whole-plant responses to salinity. Functional Plant Biology 13(1):143-160
Nikoo MR, Kerachian R, and Karimi A (2012) A nonlinear interval model for water and waste load allocation in river basins. Water Resources Management 26(10):2911-2926.
Nikoo MR, Kerachian R, Karimi A, and Azadnia AA (2013) Optimal water and waste-load allocations in rivers using a fuzzy transformation technique: A case study. Environmental Monitoring and Assessment 185(3):2483-2502
Nikoo MR, Kerachian R, Karimi A, Azadnia AA, and Jafarzadegan K (2014) Optimal water and waste load allocation in reservoir–river systems: a case study. Environmental Earth Sciences 71(9):4127-4142
Qin XS, Huang GH, Zeng GM, Chakma A, and Huang Y (2007) An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research 180(3):1331-1357
Qin X, Huang G, Chen B, and Zhang B (2009) An interval-parameter waste-load-allocation model for river water quality management under uncertainty. Environmental Management 43(6):999-1012
Revelle CS, Loucks DP, and Lynn WR (1968) Linear programming applied to water quality management. Water Resources Research 4(1):1-9
Revelli R, and Ridolfi L (2004) Stochastic dynamics of BOD in a stream with random inputs. Advances in Water Resources 27(9):943-952
Saadatpour M and Afshar A (2007) Waste load allocation modeling with fuzzy goals; simulation-optimization approach. Water Resources Management 21(7):1207-1224
Saadatpour M, Afshar A, and Khoshkam H (2019) Multi-objective multi-pollutant waste load allocation model for rivers using coupled archived simulated annealing algorithm with QUAL2Kw. Journal of Hydroinformatics 21(3):397-410
Sadak D, Ayvaz MT, and Elçi A (2020) Allocation of unequally-weighted wastewater discharge loads using a simulation-optimization approach. Journal of Hydrology 589(2020):125-158
Saremi A, Sedghi H, Manshouri M, and Kave F (2010) Development of multi-objective optimal waste model for Haraz River. World Applied Sciences Journal 11(8):924-929
Sasikumar K, and Mujumdar P (1998) Fuzzy optimization model for water quality management of a river system. Journal of Water Resources Planning and Management 124(2):79-88
Tung YK and Hathhorn WE (1990) Stochastic waste load allocation. Ecological Modelling 51(2):29-46
Yandamuri S, Srinivasan K, and Murty Bhallamudi S (2006) Multiobjective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II. Journal of Water Resources Planning and Management 132(3):133-143
Yu Y, Zhang H, and Lemckert C (2014) Salinity and turbidity distributions in the Brisbane River estuary, Australia. Journal of Hydrology 519:3338-3352
Zhang M, Ni J, and Yao L (2018)  Pigovian tax-based equilibrium strategy for waste-load allocation in river system. Journal of Hydrology 563:223-241
Zhou X, Huang G, Zhu H, and Yan B, (2015) Two-stage chance-constrained fractional programming for sustainable water quality management under uncertainty. Journal of Water Resources Planning and Management 141(5):04014074
Zolfagharipoor MA and Ahmadi A (2016) A decision-making framework for river water quality management under uncertainty: Application of social choice rules. Journal of Environmental Management 183:152-16