بهینه سازی شبکه پایش کیفیت منابع آب زیرزمینی شهر مشهد با استفاده از مدل سازی فضایی-زمانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کاندیدای دکتری آبیاری و زهکشی، پردیس بین الملل دانشگاه فردوسی مشهد، ایران

2 استاد گروه علوم و مهندسی آب دانشگاه فردوسی مشهد، ایران

3 دانشیار گروه علوم و مهندسی آب دانشگاه فردوسی مشهد، ایران

چکیده

بهینه سازی شبکه پایش یک فرآیند تصمیم گیری برای داشتن بهترین ترکیب در بین ایستگاه های موجود است. به دلیل ملاحظات اقتصادی و کاستن از هزینه های پایش، رویکرد بهینه سازی در این پژوهش، کاهش ایستگاه‌های پایش کیفی منابع آب زیرزمینی آبخوان شهر مشهد است. با استفاده از الگوریتمی براساس معیارهای آنتروپی و بر مبنای شاخص آلودگی نیترات، نسبت به بهینه سازی شبکه پایش با 287 حلقه چاه در دوره آماری 1381 تا 1389 اقدام شد. بر این اساس ابتدا میانگین رتبه هر ایستگاه در 9 سال آماری بدست آمد. سپس برای آنتروپی شبکه بر حسب تعداد ایستگاه و زمان مدل هایی پیشنهاد گردید. پس از برازش بهترین مدل آنتروپی شبکه، نتایج نشان داد که 111 حلقه چاه به عنوان ایستگاه های پایش کیفیت منابع آب زیرزمینی شهر مشهد کفایت می کند. به منظور تائید شبکه پیشنهاد شده نیز در هر سال آماری، شبکه هایی تصادفی با تعداد 111 حلقه چاه انتخاب گردید و با مقایسه آنتروپی شبکه آنها با شبکه منتخب، کارایی شبکه منتخب تائید شد. همچنین میزان کارایی شبکه منتخب برای آینده آبخوان مشهد نیز مورد تائید قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Groundwater Quality Monitoring Network in Mashhad Aquifer Using Spatio-Temporal Modeling

نویسندگان [English]

  • M. Akbar Zadeh 1
  • B. Ghahraman 2
  • K. Davary 3
1 PhD Candidate, Irrigation & Drainage, International Campus, Ferdowsi University of Mashhad, Iran
2 Professor, Department of Water Engineering, Ferdowsi University of Mashhad, Iran
3 Associate Professor, Department of Water Engineering, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Optimization of monitoring network is the best possible process for decision-making in an available network. Considering economic objectives and for reducing the costs of monitoring, optimization approach in this study is based on decreasing the groundwater quality monitoring stations in Mashhad aquifer. Using an algorithm based on entropy and nitrate pollution index, optimizing the monitoring network was conducted with 287 wells in the period of 2002 to 2011. First, the average of each station rank was calculated based on 9 statistical years. Then, some models were proposed for entropy of the network in terms of station numbers and time. After fitting the best network entropy model, the results showed that 111 wells are sufficient as groundwater quality monitoring stations for Mashhad. In order to approve the proposed network, 111 random networks were selected in each year, and by comparing the entropy of the network to the selected network, the performance of that network was confirmed. Also, the selected network performance was confirmed for future of Mashhad aquifer.

کلیدواژه‌ها [English]

  • aquifer
  • Nitrate
  • Algorithm
  • Entropy
  • Kriging
Akbarzadeh M and Ghahraman B (2013) A combined strategy of Entropy and spatio-temporal Kriging in determining optimal network for groundwater quality monitoring of Mashhad basin. Journal of Water and Soil 27(3):613-629 (In Persian).

Alizadeh A, Afshin S and Danesh S (2009) Determine the health policy and zoning of drinking water wells in Mashhad. Journal of Geographical Research 92:109-127 (in Persian).

Chadalavada S, Datta B and Naidu R (2011) Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site. Journal of Environmental Monitoring and Assessment 173(1-4):929-940.

Haining RJ (1993) Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press.

Karamouz M, Nokhandan Ak, Kerachian R and Maksimovic C (2009) Design of on-line river water quality monitoring systems using the entropy theory: a case study. Journal of Environmental Monitoring and Assessment 155(1):63-81.

Masoumi F and Kerachian R (2010) Optimal redesign of groundwater quality monitoring networks: a case study. Journal of Environmental Monitoring and Assessment 161(1-4):247-257.

Mogheir Y and Singh VP (2002) Application of information theory to groundwater quality monitoring system. Journal of Water Resources Management 16(1):37-49.

Mogheir Y and Singh VP (2003) Specification of information needs for groundwater resources management and planning in developing country: Gaza Strip case study. In: Groundwater Hydrology, Sherif MM, Singh VP and Al-Rashed M, Balkema (eds), Tokyo, 2:3-20.

Mogheir Y, De Lima, JLMP and Singh VP (2009) Entropy and Multi-Objective based approach for groundwater quality monitoring network assessment and redesign. Journal of Water Resources Management 23(8):1603-1620.

Mogheir Y, Lima JLMPd and Singh VP (2004) Characterizing the spatial variability of groundwater quality using the entropy theory: I. Synthetic data. Journal of Hydrological Processes 18(11):2165-2179.

Mogheir Y, Lima JLMPd and Singh VP (2004) Characterizing the spatial variability of groundwater quality using the entropy theory: II. Synthetic data. Journal of Hydrological Processes 18(13):2579-2590.

Mogheir Y, Singh VP and Lima JLMPd (2006) Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Journal of Hydrogeology 14(5):700-712.

Ning SK and Chang NB (2005) Screening the relocation strategies of water monitoring quality stations by compromise programming. Journal of the American Water Resources Association (JAWRA) 41(5):1039-1052.

Shafiei M, Ghahraman B and Saghafian B (2013) Evaluation and optimization of raingauge network using probability kriging (case study: Gorgan-Rud watershed). Journal of Iran-Water Resources Research 9(2):9-18 (in Persian).

Shannon CE (1948) A mathematical theory of communication. Journal of Bell System Technical 27:623-656.

Singh VP (2013) Entropy Theory and its Application in Environmental and Water Engineering. John Wiley and Sons.

Yakirevich A, Pachepsky YA, Gish TJ, Guber AK, Kuznetsov MY, Cady RE and Nicholson TJ (2013) Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology 501:13-24.

Yeh HC, Chen YC, Wei C and Chen RH (2011) Entropy and kriging approach to rainfall network design. Journal of Paddy and Water Environment 9(3):343-355.

Yeh MS, Lin YP and Chang LC (2006) Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Journal of Environmental Geology 50(1):101-121.