مدل هارگریوز- سامانی تعدیل یافته بر مبنای ارتفاع در مناطق مرتفع ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی منابع آب، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنرکرمان، کرمان، ایران.

2 دانشیار، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنرکرمان، کرمان، ایران.

3 استادیار، بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران.

چکیده

سازمان غذا و کشاورزی (FAO)، مدل پنمن- مانتیث فائو 56 را به عنوان یک روش استاندارد در برآورد تبخیرتعرق مرجع (ETo) پیشنهاد کرده است. با این حال در مناطق مرتفع اغلب به دلیل کمبود ایستگاه­‌های هواشناسی، مشکلات دیدبانی و ناقص بودن داده‌­های هواشناسی لازم، استفاده از این مدل با عدم قطعیت مواجه است. بنابراین، در این مناطق باید از مدل­‌هایی استفاده شود که به متغیرهای هواشناسی کمتری نیاز داشته باشند و همچنین بتوان آنها را به عنوان تابعی از ارتفاع درنظر گرفت. از این رو در تحقیق حاضر از داده­‌های 28 ایستگاه سینوپتیک ایران با ارتفاع بیش از 2000 متر از سطح دریا در بازه زمانی سال­های 2019-1989 برای تعدیل مدل هارگریوز- سامانی بر اساس ارتفاع و تصحیح ضرایب عامل دما استفاده شد. مقایسه نتایج حاصل از مدل پنمن- مانتیث فائو 56 به عنوان روش استاندارد و مدل‌های هارگریوز- سامانی اصلی و هارگریوز- سامانی تعدیل‎‌یافته نشان داد که مدل تعدیل‌‎یافته بر اساس ارتفاع، نتایج بهتری نسبت به مدل اصلی ارائه می‌­دهد و قادر است تبخیر-تعرق مرجع در مناطق مرتفع ایران را با دقت مناسب‌­تری برآورد کند. بیش‌ترین نزدیکی در تخمین تبخیرتعرق با مدل هارگریوز- سامانی تعدیل‎‌یافته و مدل پنمن- مانتیث فائو 56 بر اساس نتایج شاخص‌­های آماری MBE، MAE، RMSE، PVC، LVC، d، r و PI در ایستگاه­‎‌های فیروزکوه، بافت، بلده، سی­‌سخت، آوج، خوانسار، آبعلی، داران، فریدون‌شهر، بروجن، سمیرم، الیگودرز، فرخ‌­شهر، دماوند، سپیدان و سامان مشاهده شد که نسبت به مقادیر حاصل از مدل هارگریوز- سامانی اصلی به طور میانگین 14 درصد کاهش خطا داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modified Hargreaves-Samani Model Based on Altitude in the High-Altitude Regions of Iran

نویسندگان [English]

  • Zahra Jalali 1
  • Bahram Bakhtiari 2
  • Kourosh Qaderi 2
  • Soudabeh Golestani Kermani 3
1 - M.Sc. of Water Resources Engineering, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
2 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
3 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده [English]

The Food and Agriculture Organization (FAO) has proposed the FAO 56 Penman-Monteith model as a standard method for estimating reference evapotranspiration (ETo). However, using this model for the high-altitude regions mostly faces uncertainty due to the lack of meteorological stations, observation problems, and incomplete meteorological data. Therefore, in these regions models should be used that require fewer meteorological variables and can also be considered as a function of altitude. In the present study, the data from 28 synoptic stations in Iran with an altitude of more than 2000 meters above sea level in the period of 1989-2019 were used to modify the Hargreaves-Samani model based on the altitude and also correct the temperature factor coefficients. The comparison of the results of the FAO 56 Penman-Monteith model as a standard method, the original Hargreaves-Samani, and the modified Hargreaves-Samani models showed that the modified model offers better results than the original model and is able to estimate the ETo more accurately in the high-altitude regions of Iran. Based on the results of MBE, MAE, RMSE, PVC, LVC, d, r, and PI statistical indices, the highest agreement in estimating ETo with modified Hargreaves-Samani and FAO 56 Penman-Monteith models was observed at Firuzkuh, Baft, Baladeh, Sisakht, Avaj, Khansar, Abali, Daran, Fereidunshahr, Borujen, Samirom, Aligudarz, Farokhshahr, Damavand, Sepidan and Saman stations, which had an average error reduction of 14% compared to the values obtained from the original Hargreaves-Samani model.

کلیدواژه‌ها [English]

  • Altitude Function
  • evapotranspiration
  • Correction coefficients
  • Hargreaves-Samani
Acton FS (1966) Analysis of straight-line data. New York: Dover
Allen RG, Walter IA, Elliot R, Howell T, Itenfisu D, Jensen M (2005) The ASCE standardized reference evapotranspiration equation. In: Final Rep., National Irrigation Symp. ASCEEWRI Task Committee, Phoenix
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56 Rome: Food and Agriculture Organization of the United Nations 300 p.
Almorox J, Grieser J (2015) Calibration of the Hargreaves–Samani method for the calculation of reference evapotranspiration in different Köppen climate classes. Hydrology Research 47(2):521-531
Althoff D, dos-Santos RA, Bazame HC, Da-Cunha FF, Filgueiras R (2019) Improvement of Hargreaves–Samani reference evapotranspiration estimates with local calibration. Journal of Water 11(11):2272
Awal R, Habibia H, Faresa A, Deb A (2020) Estimating reference crop evapotranspiration under limited climate data in West Texas. Journal of Hydrology Regional Studies 28:100677
Amatya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. Journal of Irrigation and Drainage Engineering, ASCE 121(6):427-435
Barnston A (1992) Correspondence among the Correlation [root mean square error] and Heidke Verification Measures; Refinement of the Heidke Score. Notes and Correspondence, Climate Analysis Center
Berti A, Tardivo G, Chiaudani A, Rech F, Borin M (2014) Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management 140:20-25
Čadro S, Cherni-Čadro S, Marković M, Žurovec J (2019) A reference evapotranspiration map for Bosnia and Herzegovina. International Soil and Water Conservation Research 7(1):89-101
Cobaner M, Citakoğlu H, Haktanir T, Kisi O (2016) Modifying Hargreaves–Samani equation with meteorological variables for estimation of -reference evapotranspiration in Turkey. Hydrology Research 48(2):480-497
Cobaner M (2013) Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique. Irrigation Science 31(2):119-134
Camargo PC, Sentelhas AP (1997) Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no estado de São Paulo. Revista Brasileira de Agrometeorologia 5(1):89-97
Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems 16(1):33-45
Feng Y, Jia Y, Cui N, Zhao L, Li C, Gong D (2017) Calibration of Hargreaves model for referenc evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management 181:1-9
Fooladmand HR, Haghighat M (2007) Spatial and temporal calibration of Hargreaves equation for calculating monthly ETo based on Penman-Monteith method. Irrigation and Drainage 56(4):439-449
Fooladmand HR (2011) Evaluation of Blaney-Criddle equation for estimating evapotranspiration in south of Iran. African Journal of Agricultural Research 6(13):3103-3109
Fooladmand HR, Ahmadi SH (2008) Monthly spatial calibration of Blaney–Criddle equation for calculating monthly ETo in south of Iran. Irrigation and Drainage: The Journal of the International-Commission on Irrigation and Drainage 58(2):234-245
Gavilan P, Lorite IJ, Tornero S, Berengena J (2006) Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agricultural Water Management 81:257-281
Gocic M, Trajkovic S (2011) Software for estimating reference evapotranspiration using limited weather data. Computers and Electronics in Agriculture 71(2):158-162
Gocic M, Trajkovic H (2011) Service-oriented approach for modeling and estimating reference evapotranspiration. Computers and Electronics in Agriculture 79(2):153-158
Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1(2):96-99
Hargreaves GH, Allen AG (2003) History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering 129(1):53-63
Jacovides CP, Kontoyiannis H (1995) Statistical procedures for the evaluation of evapotranspiration computation models. Agricultural Water Management 27(3-4):365-371
Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ETo under nonideal conditions. Journal of Irrigation and Drainage Engineering 123(5):394-400
Kisi O (2008) The potential of different ANN techniques in evapotranspiration modelling. Hydrological Process 22914:2449-2460
Khalili A (1993) A new method of bioclimtological classification system applied to the forest region of the South Caspian Sea. Abstract Proceedings of the 13th International Congress of Biometeorology, Calgary, Canada
Khalili A, Rezai-e Sadr H (1994) Estimation of Global Solar radiation overIran based on climatical data. University of Tehran 399
Borges-Ferreira L, França-da Cunha F, Barbosa-Duarte A, Chohaku-Sediyama G, Roberto-Cecon P (2018) Calibration methods for the Hargreaves-Samani equation. Ciência e Agrotecnologia 42(1):104-114
Maestre-Valero JF, Martinez-Alvarez V, Gozalez-Real MM (2013) Regionalization of the Hargreaves coefficient to estimatelong-term reference evapotranspiration series in SE Spain. Spanish Journal of Agricultural Research 11(4):1137-1152
Marti P, Zarzo M, Vanderlinden K, Girona J (2015) Parametric expressions for the adjusted Hargreaves coefficient in eastern Spain. Journal of Hydrology 529:1713-1724
Martinez-Cob A, Tejero-Juste M (2004) A wind-based qualitative calibration of the Hargreaves ETo estimation equation in semiarid region. Agricultural Water Management 64(3):251-264
Mendicino G, Senatore A (2013) Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in southern Italy. Journal of Irrigation and Drainage Engineering ASCE 139(5):349-362
Miller D, Salkind N (2002) Handbook of research design & social meaturement. London: Sage Publication
Mohawesh OE, Talozi SA (2012) Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments. Archives of Agronomy and Soil Science 58(3):321-334
Monteith JL (1965) Evaporation and environment pp. 205-234. In G.E. Fogg (ed.) Symposium of the Society for Experimental Biology, The State and Movement of Water in Living Organisms Vol. 19, Academic Press, Inc., NY.
Ngongondo C, Xu CY, Tallaksen LM, Alemaw B (2012) Evaluation of the FAO Penman–Montheith, Priestley–Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi. Hydrology Research 44(4):706-722
Patel J, Patel H, Bhatt C (2014) Modified HS equation for accurate estimation of evapotranspiration of diverse climate locations in India. Journal article, Proceedings of the National Academy of Sciences India Section B 85(1):161-166
Rahimi J, Ebrahimpour M, Khalili A (2013) Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Teoretical and Applied Climatology 112:409-418
Rodrigues GC, Braga RP (2021) A simple procedure to estimate reference evapotranspiration during the irrigation season in a hot-summer mediterranean climate. Sustainability 13:349
Rostami A, Bazaneh M, Piety P (2016) Evaluation and calibration of Hargreaves model in estimation of evapotranspiration of reference plant (Case study: East Azarbaijan Province). 16th Iranian Hydraulic Conference, Faculty of Engineering, Mohaghegh Ardabili University, Ardabil, 15 and 16 September (In Persian)
Samani Z (2000) Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering ASCE 129(5):360-370
Sepaskhah AR, Razzaghi F (2009) Evaluation of the adjusted Thornthwaite and Hargreaves-Samani methods for estimation of daily evapotranspiration in a semi-arid region of Iran. Archives of Agronomy and Soil Science 55(1):51-66
Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computer and Electronics in Agriculture 108:230-241
Subburayan S, Murugappan A, Mohan S (2011) Modified HS equation for estimation of ET0 in a hot and humid location in TamilNadu State India. International Journal of Engineering Science Technology 3(1):592-600
Suleiman AA, Hoogenboom G (2009) A comparison of ASCE and FAO-56 reference evapotranspirationfor a 15-min time step in humid climate conditions. Journal of Hydrology 375:326-333
Tabari H, Hosseinzadeh-Talaee P (2011) Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. Journal of Hydrologic Engineering ASCE 16:837-845
Talebmorad H, Ahmadnejad A, Esamian S, Ostad-Ali-Askari K, P Singh V (2020) Evaluation of uncertainty in evapotranspiration values by FAO56-Penman-Monteith and Hargreaves-Samani methods. International Journal of Hydrology Science and Technology 10(2):135-147
Tang P, Xu B, Gao Z, Li H, Gao X, Wang C (2019) Estimating reference crop evapotranspiration with elevation based on an improved HS model. Hydrology Research 50(1):187-199
Thepadia M, Martinez C (2012) Regional calibration of solar radiation and reference evapotranspiration estimates with minimal data in Florida. Journal of Irrigation and Drainage Engineering, ASCE 138(2):111-119
Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. Journal of Irrigation and Drainage Engineering, ASCE 133(4):316-323
Trajkovic S (2007) Hargreaves versus Penman-Monteith under humid conditions. Journal of Irrigation and Drainage Engineering, ASCE 133(1):38-42
Valipour M, Gholami-Sefidkouhi MA, Raeini-Sarjaz M (2021) Spatiotemporal analysis of reference evapotranspiration in arid, semiarid, mediterranean and very humid climates considering developed models and lysimeter measurements. Iranian Journal of Soil and Water Research 51(12):3127-3134
Vanderlinden K, Jiraldez JV, Meirvenne MV (2004) Assessing reference evapotranspiration by the Hargreaves method in southern Spain. Journal of Irrigation and Drainage Engineering 130(3):184-191
Gosset W (1908) The probable error of a mean. Biometrika 6(1):1-25
Willmott CJ (1981) On the validation of models. Physical Geography, 2(2):184-194
Willmott CJ, Matsuura K (2005) Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research 30(1):79-82
Xu CY, Singh V (2001) Evaluation and generalization of temperature‐based methods for calculating evaporation. Hydrological Processes 15(2):305-319
Xu CY, Singh V (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resources Management 16(3):197-219
Zanetti SS, Dohler RE, Cecílio RA, Macedo Pezzopane GE, Xavier AC (2019) Proposal for the use of daily thermal amplitude for the calibration of the Hargreaves-Samani equation. Journal of Hydrology 571:193-201
Zhu, Lu T, Lu Y, Yang Y, Gue L, Lue H, Fang CCui Y (2019) Calibration and validation of the Hargreaves Samani model for reference evapotranspiration estimation in China. Irrigation and Drainage 68(4):822-836