تعیین منشأ دی‌اکسید کربن محلول در آب‌های زیرزمینی با استفاده از هیدروژئوشیمی و مدل‌سازی ایزوتوپی کربن (مطالعه موردی: آبخوان گاریز، جنوب غرب استان یزد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هیدروژئولوژی، گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی.

2 استاد گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی.

3 استادیار گروه زمین‌شناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهید بهشتی.

چکیده

غلظت زیاد دی‌اکسید کربن، در آبخوان گاریز در جنوب غرب استان یزد باعث کاهش کیفیت آب‌های زیرزمینی و ایجاد مخاطرات محیط زیستی شده است. به‌منظور بررسی ماهیت گازهای موجود در آبخوان گاریز طی دو مرحله در تیرماه و مهرماه سال 1398 از چاه‌های گستره مطالعاتی 35 نمونه آب زیرزمینی برداشت‌ شده است. سنجش آزمایشگاهی شامل غلظت یون‌های اصلی و ایزوتوپ‌ پایدار کربن (δ13CTDIC) آب‌های زیرزمینی است. برخی از ویژگی‌های فیزیکی و شیمیایی آب‌های زیرزمینی نیز در هنگام نمونه‌برداری اندازه‌گیری شده است. در این مطالعه مشخص ‌شده است که اکثر نمونه‌ها دارای ترکیب قلیایی‌خاکی-بیکربناته تا قلیایی‌خاکی-کلروسولفاته هستند و مقادیر غلظت بی‌کربنات نمونه‌های آب زیرزمینی به علت وجود کانی‌های کربناته در آبخوان و همچنین تعامل قابل‌توجه آبخوان با سیالات غنی از دی‌اکسید کربن افزایش‌یافته است. نفوذ آب ‌شور و اختلاط آن با آب‌های غنی از CO2 نیز روند تکامل هیدروژئوشیمیایی طبیعی آبخوان را تحت تأثیر قرار داده است. ازاین‌رو به‌منظور بررسی منشأ دی‌اکسید کربن در آبخوان مقادیر δ13  به‌عنوان تابعی از دمای نمونه‌برداری و نسبت مولی کربن برحسب تعادل ایزوتوپی محاسبه‌ شده است، و با استفاده از مدل‌سازی اختلاط گازهای محلول موردبررسی قرارگرفته است. نتایج بیانگر این است که دی‌اکسید کربن موجود در آبخوان گاریز در اثر اختلاط گازهای غیر آلی غنی‌شده نسبت به کربن 13 با منشأ عمیق همراه با انتشار دی‌اکسید کربن تهی شده نسبت به کربن 13 از منشأ آلی در تعامل با آبخوان است. با توجه به برآورد ترکیب ایزوتوپی اولیه کربن با منشأ عمیق (V-PDB ‰ 2-)، عمده سیالات عمیق در تعامل با آب‌های زیرزمینی آبخوان گاریز از گوشته و کربن‌زدایی واحد‌های کالک-سیلیکاته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of the Origin of Dissolved Carbon Dioxide Using Hydrogeochemistry and Carbon Isotopic Modeling: A Case Study of Gariz Aquifer, Southwest of Yazd Province

نویسندگان [English]

  • Hossein Parsasadr 1
  • Hamid Reza Nasseri 2
  • Farshad Alijani 3
1 Ph.D. Student in Hydrogeology, Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
2 Professor, Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
3 Assistant Professor, Department of Minerals and Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

High concentrations of carbon dioxide are present in the Gariz aquifer groundwater and this phenomenon has led to many environmental hazards. In order to determin the origin of dissolved carbon dioxide in Gariz aquifer, the groundwater has been sampled from wells (35 samples) in July and October 2019. Laboratory analysis included the concentrations of major ions and stable carbon isotope (δ13CTDIC) in groundwater samples. Also some physicochemical properties of water have been measured directly in the field. On the basis of chemistry of the ions, the majority of the water samples have a chloride-sulphate alkaline-earth to bicarbonate-alkaline-earth composition and bicarbonate concentrations of groundwater samples have increased due to the presence of carbonate minerals in the aquifer as well as the significant interaction of the aquifer with carbon dioxide-rich fluids. Hydrogeochemical evolution of the aquifer groundwaters has also significantly affected by the infiltration of saline water and mixing with CO2-rich fluids. Hence, for investigating the origin of carbon dioxide dissolved in the aquifer the theoretical δ13 values have been calculated in equilibrium with collected groundwater samples at respective sampling temperatures on the basis of the carbon isotopic balance and has been evaluated using the dissolved gases mixing model. The results highlighted two main CO2 components: 1) an inorganic deep sourced CO2 (13C-enriched) and 2) an organic CO2 (13C-depleted). Calculated pristine isotopic composition of C (-2‰ V-PDB) that interacted with the aquifer indicated the significant contribution from a deep source of carbon dioxide inorganic in origin and decarbonation in calc-silicate rocks.

کلیدواژه‌ها [English]

  • Carbon dioxide
  • Hydrogeochemistry
  • Isotope compositions
  • δ13C
  • Gariz aquifer
Aali J, Rahimpour-Bonab H, & Kamali M R (2006) Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering 50(3-4):161-175
Alaminia Z, Tadayon M, Griffith E M, Solé J, & Corfu F (2021) Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran. Chemical Geology 566:120084
Atekwana E A, & Krishnamurthy R (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: Application of a modified gas evolution technique. Journal of hydrology 205(3-4):265-278
Baker J C, Bai G P, Hamilton P J, Golding S D, & Keene J B (1995) Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, eastern Australia. Journal of Sedimentary Research 65(3a):522-530
Barnes I, Irwin W P, & White D E (1978) Global distribution of carbon dioxide discharges, and major zones of seismicity. US Geological Survey, Water Resources, Division Water-Resources Investigations Report 78-39
Berhe B A, Dokuz U E, & Çelik M (2017) Assessment of hydrogeochemistry and environmental isotopes of surface and groundwaters in the Kütahya Plain, Turkey. Journal of African Earth Sciences 134:230-240
Chaichi Z, & Haddadan M (2008) Geological Map of NIR, Scale: 1/100,000. Geological Survey and Mineral Exploration of Iran
Caliro S, Chiodini G, Avino R, Cardellini C, & Frondini F (2005) Volcanic degassing at Somma–Vesuvio (Italy) inferred by chemical and isotopic signatures of groundwater. Applied Geochemistry 20(6):1060-1076
Capasso G, Favara R, Grassa F, Inguaggiato S, & Longo M (2005) On-line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (δ13CTDIC). Annals of Geophysics 48:159-166
Caracausi A, & Sulli A (2019) Outgassing of mantle volatiles in compressional tectonic regime away from volcanism: the role of continental delamination. Geochemistry, Geophysics, Geosystems 20(4):2007-2020
Chiodini G, Frondini F, Cardellini C, Parello F, & Peruzzi L (2000) Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. Journal of Geophysical Research: Solid Earth 105(B4):8423-8434
Chunsen D A I, Yan S O N G, & Jin-xing D A I (1996) Multi-stage degassing of the earth in extensional basis of eastern China. Petroleum Exploration and Development 23(2):1-5
Clark I D, & Fritz P (1997) Environmental isotopes in hydrogeology. CRC press
Clayton J L, Spencer C W, Koncz I, & Szalay A (1990) Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary. Organic Geochemistry 15(3):233-247
D'Alessandro W, De Gregorio S, Dongarrà G, Gurrieri S, Parello F, & Parisi B (1997) Chemical and isotopic characterization of the gases of Mount Etna (Italy). Journal of Volcanology and Geothermal Research 78(1-2):65-76
Deines P, Langmuir D, & Harmon R S (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta 38(7):1147-1164
Delkhahi B, Nassery H R, Vilarrasa V, Alijani F, & Ayora C (2020) Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. International Journal of Greenhouse Gas Control 96:103001
Emblanch C, Zuppi G, Mudry J, Blavoux B, & Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: The example of the Vaucluse karst systems (Southeastern France). Journal of Hydrology 279(1-4):262-274
Fourré E, Di Napoli R, Aiuppa A, Parello F, Gaubi E, Jean-Baptiste P, . . . Mamou A B (2011) Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. Chemical Geology 288(1-2):67-85
Gaglioti S, Infusino E, Caloiero T, Callegari G, & Guagliardi I (2019) Geochemical characterization of spring waters in the Crati river basin, Calabria (Southern Italy). Geofluids 3850148, 2019:1-16
Ghomashi A, & Haddadan M (2008) Geological Map of DEHSHIR, Scale: 1/100,000. Geological Survey and Mineral Exploration of Iran
Grassa F, Capasso G, Favara R, & Inguaggiato S (2006) Chemical and isotopic composition of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic islands, Italy. Pure and Applied Geophysics 163(4):781-807
Inguaggiato S, Martin-Del Pozzo A, Aguayo A, Capasso G, & Favara R (2005) Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): Evidence of gas–water interaction between magmatic component and shallow fluids. Journal of Volcanology and Geothermal Research 141(1-2):91-108
Inguaggiato S, Pecoraino G, & D'amore F (2000) Chemical and isotopical characterisation of fluid manifestations of Ischia Island (Italy). Journal of Volcanology and Geothermal Research 99(1-4):151-178
Italiano F, Bonfanti P, Ditta M, Petrini R, & Slejko F (2009) Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy): Geochemical evidence of CO2 production and degassing over a seismically active area. Chemical Geology 266(1-2):76-85
Kaviani A, Mahmoodabadi M, Rümpker G, Pilia S, Tatar M, Nilfouroushan F, . . . Ali M Y (2021) Mantle-flow diversion beneath the Iranian plateau induced by Zagros’ lithospheric keel. Scientific Reports 11(1):2848
Langelier W F, & Ludwig H F (1942) Graphical methods for indicating the mineral character of natural waters. Journal‐American Water Works Association 34(3):335-352
Liotta M, Paonita A, Caracausi A, Martelli M, Rizzo A, & Favara R (2010) Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chemical Geology 278(1-2):92-104
Marty B, & Jambon A (1987) C3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth and Planetary Science Letters 83(1-4):16-26
Mohammadi Z, Vaselli O, Muchez P, Hannes C, Capezzuoli E, & Swennen R (2020) Hydrogeochemistry, stable isotope geochemistry and geothermometry of CO2-bearing hydrothermal springs from Western Iran: Evidence for their origin, evolution and spatio-temporal variations. Sedimentary Geology 404:105676
Mook W, Bommerson J, & Staverman W (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22(2):169-176
Muñoz-Montecinos J, Angiboust S, Garcia-Casco A, Glodny J, & Bebout G (2021) Episodic hydrofracturing and large-scale flushing along deep subduction interfaces: Implications for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran). Chemical Geology 571:120173
Nassery H R, & Raei M (2013) Nature and source of gas specious in gariz aquifer (Yazd, Iran). Paper presented at the 2nd International Conference on Hydrology and Groundwater Expo, DoubleTree by Hilton, Raleigh, NC, USA.
O'Leary M H (1988) Carbon isotopes in photosynthesis. Bioscience 38(5):328-336
Parkhurst D L, & Appelo C (1999) User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99(4259):312
Pineau F, Shilobreeva S, Hekinian R, Bideau D, & Javoy M (2004) Deep-sea explosive activity on the Mid-Atlantic Ridge near 34 50′ N: A stable isotope (C, H, O) study. Chemical Geology 211(1-2):159-175
Planavsky N, Partin C, & Bekker A (2014) Carbon isotopes as a geochemical tracer. Encyclopedia of Astrobiology: Berlin, Springer-Verlag, 1-6
Rueedi J, Cronin A, Taylor R, & Morris B (2007) Tracing sources of carbon in urban groundwater using δ 13 C TDIC ratios. Environmental Geology 52(3):541-557
Sano Y, & Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chemical Geology 119(1-4):265-274
Scheffer C, Tarantola A, Vanderhaeghe O, Rigaudier T, & Photiades A (2017) CO2 flow during orogenic gravitational collapse: Syntectonic decarbonation and fluid mixing at the ductile-brittle transition (Lavrion, Greece). Chemical Geology 450:248-263
Schoell M (1983) Genetic characterization of natural gases. AAPG bulletin 67(12):2225-2238
Whiticar M J (1994) Correlation of natural gases with their sources: Chapter 16: Part IV. Identification and Characterization. AAPG Memoir 60:261-283
Wycherley H, Fleet A, & Shaw H )1999( Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins. Marine and Petroleum Geology 16(6):489-494
Zhang L, Guo Z, Sano Y, Zhang M, Sun Y, Cheng Z, & Yang T F (2017) Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone. Journal of Asian Earth Sciences 149:110-123