پایش تغییرات مکانی- زمانی آلبدوی سطح دریاچه ارومیه با استفاده از داده های سنجنده MODIS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی و مدیریت منابع آب، گروه مهندسی و مدیریت منابع آب، دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس.

2 استادیار گروه مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.

چکیده

آلبدوی طول موج کوتاه سطح یکی از مهم­ترین عوامل تأثیرگذار بر روی بیلان انرژی دریاچه­ها است. این پژوهش با هدف بررسی تغییرات مکانی- زمانی آلبدوی طول موج کوتاه در محدوده­ مرز کلی دریاچه ارومیه انجام شد. برای این منظور ابتدا مرز پهنه­های آبی، نمکی و نواحی بایر استخراج شده و سپس سری زمانی ماهانه آلبدو با استفاده از محصول آلبدوی سنجنده MODIS (MCD43A3) بررسی گردید. نتایج اعتبارسنجی نشان داد که داده­های MODIS، آلبدو را کمتر از مقادیر مشاهداتی برآورد می­کند. همچنین، با کاهش تراز دریاچه طی بازه سال­های 2008 الی 2017 نسبت به دهه قبل از آن، مقدار آلبدوی سطح (تا %150) افزایش یافته است که می­تواند منجر به کاهش دمای سطح آب، تبخیر و ظرفیت نگهداشت حرارتی دریاچه شده و در نتیجه نقش دریاچه در تعدیل و تنظیم میکرو اقلیم منطقه را کاهش دهد. علیرغم افزایش سطح خاک بایر و نمک طی این دوره، آلبدوی این محدوده­ها بدون روند و نسبتا ثابت بوده است. نتایج این پژوهش حاکی از عدم کارآیی مناسب داده­های محصول آلبدوی سطح (MCD43A3 v.6) در پایش آلبدوی دریاچه ارومیه است و می­تواند به بهبود عملکرد محصولات آلبدوی سنجنده MODIS در نسخه­های بعدی کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monitoring Spatiotemporal Variation of Lake Urmia Surface Albedo Using MODIS Satellite Data

نویسندگان [English]

  • Amir Darzi 1
  • Somayeh Sima 2
1 M.Sc. of Engineering and Water Resource Management, Civil & Environmental Engineering Department, University of Tarbiat Modares, Tehran, Iran.
2 Assistant Professor, Civil & Environmental Engineering Department, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Albedo is one of the important factors affecting the energy balance of lakes. This study investigates the spatiotemporal variation of shortwave albedo over the entire boundary of Lake Urmia. For this purpose, first, the boundaries of the lake water body, salt flats, and bare lands have been extracted. Secondly, monthly time series of shortwave albedo have been analyzed using the MODIS albedo product (MCD43A3). The validation results showed that MODIS data underestimates the lake surface albedo. Moreover, along with the significant lake level drop from 2008 to 2017 (compared to the previous decade), the surface albedo of Lake Urmia has extremely increased (up to 150%). This, in turn, can lead to a decrease in surface temperature, evaporation, and thermal storage capacity of the lake and impair its function in regulating the micro-climate of its surrounding region. Despite an increase in the bare land and salt flat areas, albedo of these surfaces have remained pretty constant and no trend has been observed during the study period. Results of this study indicated the inefficiency of the MODIS albedo data (MCD43A3 v.6) in monitoring Lake Urmia albedo. Findings can also provide insights into the performance improvement of the next version of MODIS albedo products, particularly over saline lakes.
 

کلیدواژه‌ها [English]

  • Shortwave radiation
  • saline lakes
  • Water level
  • Validation
Abbas A, Khan S, Hussain N, Hanjra MA, and Akbar S (2013) Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth. Elsevier Ltd 55–57:43–52
Al-khaier F (2003) Soil salinity detection using satellite remote sensing. African Journal of Enviromental Science and Technology 2(4):7–20
Alipour S (2006) Hydrogeochemistry of seasonal variation of Urmia Salt Lake. Chinese Journal of Geochemistry 25(S1):193–194
Argaman E, Keesstra SD, and Zeiliguer A (2012) Monitoring the impact of surface albedo on a saline lake in SW Russia. Land Degradation and Development. John Wiley & Sons, Ltd 23(4):398–408
Craft KM and Horel JD (2019) Variations in surface albedo arising from flooding and desiccation cycles on the Bonneville salt flats, Utah. Journal of Applied Meteorology and Climatology 58(4):773–785
Danesh-Yazdi M and Ataie-Ashtiani B (2019) Lake Urmia crisis and restoration plan: Planning without appropriate data and model is gambling. Journal of Hydrology 576:639–651
Dehghanipour AH, Panahi DM, and Mousavi H (2020) Effects of water level decline in Lake Urmia, Iran, on Local Climate Conditions. Water (Switzerland) 12(8):2153
Dickinson RE (1983) Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics 25(C):305–353
Eugster W, Rouse WR, Pielke RA, Mcfadden JP, Baldocchi DD, Kittel TGF, Chapin FS, Liston GE, Vidale PL, Vaganov E, and Chambers S (2000) Land-atmosphere energy exchange in Arctic tundra and boreal forest: Available data and feedbacks to climate. Global Change Biology 6(SUPPLEMENT 1):84–115
Jalilvand E, Sima S, and Saravani S (2017) Examining variation of Lake Urmia surface albedo and its coasts and environmental consequences. 10th National Congress of Civil Engineering, Tehran
Jaiswal RK, Lohani AK, and Tiwari HL (2015) Statistical Analysis for change detection and trend assessment in climatological parameters. Environmental Processes 2(4):729–749
Jin Y, Schaaf CB, Woodcock CE, Gao F, Li X, Lucht W, and Liang S (2003) Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. Journal of Geophysical Research 108(D5):4159
Katsaros KB, McMurdie LA, Lind RJ, and Devault JE (1985) Albedo of a water surface, spectral variation, effects of atmospheric transmittance, sun angle and wind speed. Journal of Geophysical Research 90(C4):7313–7321
Kendall MG (1961) The advanced theory of statistics. Technometrics 5(4):525–528
Khorsand Movaghar M (2016) Estimating evaporation from saline lakes with developing a RS-based energy balance model (Case study Urmia lake). Tarbiat Modares University
Khan NM, Rastoskuev V V, Shalina E V, and Sato Y (2001) Mapping salt-affected soils using remote sensing indicators-A simple approach with the use of GIS IDRISI. 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore
Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, and Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR (September):159
Lang J, Lyu S, Li Z, Ma Y and Su D (2018) An investigation of ice surface albedo and its influence on the high-altitude lakes of the Tibetan Plateau. Remote Sensing 10(2):218
Liang S, Fang H, Chen M, Shuey CJ, Walthall C, Daughtry C, Morisette J, Schaaf C, and Strahler A (2002) Validating MODIS land surface reflectance and albedo products: Methods and preliminary Results. Remote Sensing of Environment 83(1-2):149–162
Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245
Mcfeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7):1425-1432
Mouchot MC, Alfoldi T, De Lisle D, and McCullough G (1991) Monitoring the water bodies of the Mackenzie Delta by remote sensing methods. Arctic 44(Suppl. 1):21–28
Qu Y, Liang S, Liu Q, He T, Liu S, and Li X (2015) Mapping surface broadband albedo from satellite observations: A review of literatures on algorithms and products. Remote Sensing 7(1):990–1020
Rokni K, Ahmad A, Selamat A, and Hazini S (2014) Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing 6(5):4173–4189
Román MO, Schaaf CB, Woodcock CE, Strahler AH, Yang X, Braswell RH, Curtis PS, Davis KJ, Dragoni D, Goulden ML, … Wofsy SC (2009) Remote sensing of environment the MODIS (Collection V005) BRDF / albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sensing of Environment, Elsevier Inc. 113(11):2476–2498
Rutan D, Charlock TP, Rose F, Kato S, Zentz S, and Coleman L (2006) Global surface albedo from CERES/TERRA Surface and Atmospheric Radiation Budget (SARB) data product. 12th Conference on Cloud Physics, and 12th Conference on Atmospheric Radiation, 1–6
Saemian P, Elmi O, Vishwakarma BD, Tourian MJ, and Sneeuw N (2020) Analyzing the Lake Urmia restoration progress using ground-based and spaceborne observations. Science of the Total Environment, Elsevier B.V. 739:139857
Salleh SA, Latif ZA, Pradhan B, Wan Mohd WMN, and Chan A (2014) Functional relation of land surface albedo with climatological variables: A review on remote sensing techniques and recent research developments. Geocarto International 29(2):147–163
Salomon JG, Schaaf CB, Strahler AH, and Measurements ASA (2006) Validation of the MODIS Bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra Platforms. IEEE Transactions on Geoscience and Remote Sensing 44(6):1555–1565
Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller JP, … Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment 83(1–2):135–148
Sima S, Rosenberg DE, Wurtsbaugh WA, Null SE, and Kettenring KM (2021) Journal of hydrology: Regional studies managing Lake Urmia, Iran for diverse restoration objectives: Moving beyond a uniform target lake level. Journal of Hydrology: Regional Studies, Elsevier B.V. 35(September 2020):100812
Stroeve J, Box JE, Gao F, Liang S, Nolin A, and Schaaf C (2005) Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sensing of Environment 94(1):46–60
Susaki J, Yasuoka Y, Kajiwara K, Honda Y, and Hara K (2007) Validation of MODIS albedo products of paddy fields in Japan. IEEE Transactions on Geoscience and Remote Sensing 45(1):206–217
Tsvetsinskaya EA, Schaaf CB, Gao F, Strahler AH, and Dickinson RE (2006) Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer-derived surface albedo over global arid regions. Journal of Geophysical Research Atmospheres 111(20):1–10
Wang D, Liang S, He T, Yu Y, Schaaf C and Wang Z (2015) Estimating daily mean land surface albedo from MODIS data. Journal of Geophysical Research: Atmospheres 120(10):4825–4841
Wang K, Liang S, Schaaf CL, and Strahler AH (2010) Evaluation of moderate resolution imaging spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. Journal of Geophysical Research 115(D17):D17107
Wang Z, Schaaf CB, Sun Q, Shuai Y, and Román MO (2018) Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sensing of Environment 207(September 2016):50–64
Wetzel RG and Likens GE (2000) The Heat Budget of Lakes. Limnological Analyses. Springer ,New York, 45–56
Xu H (2006) Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14):3025–3033