توسعه روشی نوین برای تخمین شماره منحنی حوضه با استفاده از مفهوم مازاد اشباع (مطالعه موردی: حوضه آبریز کسیلیان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ سازه های آبی دانشگاه تهران، تهران، ایران

2 دانشیار گروه مهندسی آب، دانشکده فنی و مهندسی، دانشگاه بین المللی خمینی , قزوین، ایران

چکیده

در سال‌های اخیر روش‌های تجربی و مدل‌های ریاضی متعددی جهت تخمین رواناب توسعه داده شده است که از مهم‌ترین و پرکاربردترین این روش‌ها می‌توان به روش شماره منحنی SCS اشاره نمود. یکی از ویژه‌گی‌های بارز این روش استفاده از پارامتری به نام شماره منحنی (CN) برای تبدیل بارش به رواناب می‌باشد. در حال حاضر از ابزارهایی همچون GIS، RS و تلفیق نتایج آنها با نقشه‌های خاکشناسی و بازدیدهای میدانی جهت محاسبه این پارامتر استفاده می‌شود. این روش‌ها به علت نیاز به اطلاعات و عملیات محاسباتی و میدانی متعدد، زمان و هزینه زیادی را برای برآورد قابل اعتماد رواناب تحمیل می‌نمایند. در این تحقیق با استفاده از مفهوم مازاد اشباع به کار رفته در ساختار مدل نیمه توزیعی TOPMODEL، روشی ارائه شده است که به کمک آن می‌توان مقدار شماره منحنی حوضه را با سرعت زیاد، هزینه کم و دقت قابل قبول بدست آورد. رابطه پیشنهادی در این روش به سه پارامتر تخلخل خاک،  متوسط فاصله از سطح زمین تا تراز سطح ایستابی حوضه و پارامتر کنترل‌کننده عمق مؤثر خاک اشباع وابسته می‌باشد. حوضه آبریز کسیلیان که به عنوان یکی از حوضه‌های معرف کشور می‌باشد برای ارزیابی نتایج حاصل از رابطه پیشنهادی مورد استفاده قرار گرفت. در این تحقیق از تصاویر ماهواره‌ای سنجنده ETM+ ماهواره لندست 7 در تاریخ 2010 استفاده گردید و با انتقال تصاویر به محیط نرم افزار Geomatica و انجام برخی تصحیحات موردنیاز، نقشه کاربری اراضی حاصل و با تلفیق آن با نقشه‌های خاکشناسی، شیب و بازدیدهای میدانی نقشه شماره منحنی حوضه حاصل گردید. همچنین برای تخمین پارامترهای رابطه پیشنهادی از داده‌های جریان ثبت شده در ایستگاه هیدرومتری ولیک‌بن و نیز واسنجی مدل نیمه توزیعی TOPMODEL استفاده بعمل آمد. نتایج نشان داد که متوسط وزنی شماره منحنی حوضه بدست آمده از روش‌های متداول و رابطه پیشنهادی به ترتیب در حدود 6/59 و 8/62 می‌باشد. همچنین نتایج حاکی از آن است که حداقل و حداکثر اختلاف بین متوسط وزنی شماره منحنی بدست آمده از رابطه پیشنهادی و روش‌های مبتنی بر GIS و RS بترتیب در حدود 3/0 و 12 درصد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Development of a New Method for Estimation of SCS Curve Number Based on Saturation Excess Concept

نویسندگان [English]

  • A. Azizian 1
  • A. Shokoohi 2
1 PhD. Student in Hydraulic Structures, Tehran University
2 Associate Professor, Water Engineering Dept., Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin
چکیده [English]

In recent years, many empirical methods and mathematical models have been developed to estimate runoff, among which the SCS curve number is the most important and widely used method. In this method a parameter called Curve Number (CN) is used for transforming rainfall to runoff. Currently, different techniques such as RS and GIS in combination with filed surveying are used to estimate this parameter. These methods due to the huge amount of required data, field investigation, and computation burden are costly and time consuming. In this research based on the saturation excess concept, which is used in the structure of a semi distributed model called TOPMODEL, a new efficient method with a minimum data requirement was developed to estimate the SCS curve number. The proposed method depends on three parameters: soil porosity, average distance to the catchment water table, and the parameter that controls the effective depth of the saturated soil. The Kasilian catchment in northern Iran is used to investigate the proposed method. In this study, using lansat7 ETM+ images and performing some modification on the images the landuse map was obtained. Finally, by combining this map and the watershed soil and slope maps and also the results of an extensive filed survey, the SCS curve number map was developed for the entire watershed. Also, TOPMODEL was calibrated in the Kasilian catchment for the estimation of proposed method parameters. Results indicate that the watershed's average curve number based on RS/GIS and the proposed methods are about 59.6 and 62.8, respectively. Furthermore, the results showed that the minimum and maximum differences between the Curve Number obtained from RS and GIS techniques and from the proposed method for the whole range of the used parameters are about 0.3% and 12% respectively. 

کلیدواژه‌ها [English]

  • SCS
  • GIS and RS technique
  • Saturation excess concept
  • Semi distributed model: TOPMODEL

اکبرپور 1، شریفی م ب (1385) تخمین شماره منحنی رواناب با استفاده از سنجش از دور و سیستم اطلاعات جغرافیائی. مجموعه مقالات هفتمین سمینار بین­المللی مهندسی رودخانه، اهواز، ایران، 24-23 بهمن.

یعقوب­زاده م (1387) تعیین شماره منحنی حوضه آبریز با استفاده از سیستم اطلاعات جغرافیائی (GIS) و سنجش از دور (RS). پایان­نامه کارشناسی ارشد. دانشگاه شهید باهنر کرمان. 150ص.

Arnold JG, Williams JR, Srinivasan R , King KW (1996) SWAT: Soil and Water Assessment Tool. USDA-ARS, Grass-219 Land, Soil and Water Research Laboratory, Temple, TX.

Bales JR , Betson P (1981) The curve number as a hydrologic index. In Proc. of InternationalSymposium on Rainfall-Runoff Modeling, Mississippi State University: 371- 386.

Beven KJ (1997)TOPMODEL: a critique. Hydrological Processes 11: 1069-1085.

Beven KJ, Kirkby MJ, Scoeld N Tagg A (1984)Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. J. Hydrol 69:119-143.

Cosby BJ, Hornberger GM, Clapp RB , Ginn TR (1984)A statistical exploration of the relationships of soil mixture characteristics to the physical properties of soils. Water Resource. Res 20: 682–690.

Gumindoga W, Rwasoka DT , Murwira A (2011)Simulation of stream flow using TOPMODEL in the Upper Save River catchment of Zimbabwe. Physics and chemistry of the Earth 36: 806-813.

Hjelmfelt AT (1980)Curve number procedure as infiltration method. Journal of Hydrology, 106: 1107–1111.

Inci Tekeli Y, Akguül S, Dengiz O , Aküzüm T (2006)Estimation of flood discharge for small watershed using SCS curve number and geographic information system. River Basin Flood Management Journal: 527-538.

Mendicino G and Sole A (1997)The information content theory for the estimation of the topographic index distribution used In TOPMODEL. Hydrological Processes11: 1099-1114.

Mishra KS , Singh PV(1999) Another look at SCS-CN method. Journal of Hydrologic Engineering ASCE4(3): 257-264.

Quinn PF, Beven KJ , Lamb R (1995)The ln [a/tan β] index: How to calculate it and how to use it within the TOPMODEL framework. Hydrological Processes, 9: 161-182.

Rawls WJ, Ahuja LR, Brakensiek DL , Shirmohammadi A (1993)Infiltration and soil water movement. Handbook of Hydrology. (ed. by D. R. Maidment). McGraw-Hill Inc., New York, USA, 5.1–5.51.

Sivapalan M, Beven K , Wood EF (1987)On hydrologic similarity, 2, a scaled model of storm runoff production. Water Resources Research, 23(12): 2266– 2278.

Soil Conservation Service (1986)Urban hydrology for small watersheds. Technical Release 55, Springfield, USDA.

Steenhuis TS, Winchell M, Rossing J, Zollweg JA , Walter MF (1995)SCS runoff equation revisited for variable-source runoff areas. ASCE J. Irrig. Drain. Eng, 121(3): 234-238.

Steve W, Lyon M, Todd W, Pierre GM , Tammo SS (2004)Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation. Hydrological Processes 18 (15): 2757–2771.

Ward RC (1984)On the response to precipitation of headwater streams in humid areas. Journal ofHydrology74: 171–189.

Williams JR (1995)The EPIC model. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources Publications: 909–1000.

Woodward DE, Hawkins RH, Jiang R, Hjelmfelt AT, Mullem JA , Quan QD (2003)Runoff curve number method: Examination of the initial abstraction ratio. In: Proc. of the World Water&Environmental Resources Congress and Related Symposia.

Young RA, Onstad CA, Bosch DD , Anderson WP (1987)AGNPS, Agricultural non-point source pollution model: A watershed analysis tool. USDAConservation Report 35.USDA-ARS, Washington, DC.

Zhan X , Huang M (2004)Arc CN-Runoff: an ArcGIS tool for generating curve number and runoff maps. Environmental Modeling & Software, 19(10): 875-879.

Easton ZM, Fuka DR, Walter MT, Cowan DM, Schneiderman EM , Steenhuis TS (2008)Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology, 348: 279–291.

Garen DC , Moore DS (2005) Curve number hydrology in water quality modeling: uses, abuses, and future directions. J. Am. Water Resource. Assoc, 41 (2): 377–388.

Schneiderman EM, Steenhuis TS, Thongs DJ, Easton ZM, Zion MS. (2007) Incorporating variable source area hydrology into a curve-number-based watershed model. Hydrol. Process, 21: 3420– 3430.

Ducharne A (2009) Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrol. Earth Syst. Sci., 13: 2399–2412.