ارزیابی کارایی مدل WRF-Hydro در توسعه سامانه‌های پیش‌بینی و هشدار سیلاب (مطالعه موردی حوضه آبریز کشکان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده مطالعات و تحقیقات منابع آب، موسسه تحقیقات آب وزارت نیرو، تهران، ایران

2 کارشناس پژوهشی، مؤسسه تحقیقات آب، وزارت نیرو، تهران، ایران

3 عضو هیئت علمی، مؤسسه تحقیقات آب، وزارت نیرو، تهران، ایران

چکیده

جفت شدن مناسب مدل‌های عددی هواشناسی با مدل‌های توزیعی هیدرولوژیکی و کاهش عدم قطعیت مربوط به ریزمقیاس‌نمایی آنها یکی از چالش‌های اساسی در پیش‌بینی دقیق سیلاب است. بنابراین در این تحقیق با هدف پیش‌بینی سیلاب، امکان جفت‌شدن مدل عددی هواشناسی WRF با مدل WRF-Hydro، که مدلی هیدرولوژیکی-هیدرولیکی، توزیعی و فیزیکی است، بررسی می‎شود. به‌منظور واسنجی مدل، حوضه آبریز کشکان بدلیل پتانسیل بالای سیل‌خیزی بعنوان منطقه مطالعاتی انتخاب شده است. باتوجه به داده‌های هیدروگراف سیل مشاهداتی در محدوده مطالعاتی، دو واقعه سیلابی شدید در سه ایستگاه هیدرومتری برای واسنجی مدل WRF-Hydro انتخاب گردید. بر اساس تحلیل حساسیت مدل، پارامترهای کنترل نفوذ، عمق نگهداشت آب سطحی، ضریب زبری سطحی و ضریب زبری کانال بعنوان تاثیرگذارترین پارامترها در شبیه‌سازی جریان شناسایی شدند. استفاده از این پارامترها در فرآیند واسنجی، قابلیت واسنجی حجم و شکل هیدروگراف سیلاب را برای حصول به نتایج دقیق‌تر امکانپذیر خواهد ساخت. سپس با استفاده از روش گام به گام، مقادیر بهینه پارامترهای شناسایی‌شده در تحلیل حساسیت برای یکی از وقایع در ایستگاه هیدرومتری پلدختر در خروجی حوضه تعیین گردید. در گام بعدی مدل بر اساس پارامترهای بهینه تعیین شده برای سایر ایستگاه‎ها و وقایع سیلابی ارزیابی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the Efficiency of WRF-Hydro Model for Development of Flood Forecasting Systems (Case study: Kashkan Watershed)

نویسندگان [English]

  • somaye Imani 1
  • Seyed Amir Mohammad Hassanoli 2
  • Ashkan Farkhnia 3
  • Fatameh Javadi 2
  • Mohammad Saeed Najafi 3
1 Department of Water Resources Research, Water Research Institute, Ministry of Energy, Tehran, Iran
2 Research Fellow, Water Research Institute, Ministry of Energy, Tehran, Iran
3 Assistant Professor, Water Research Institute, Ministry of Energy, Tehran,
چکیده [English]

Coupling of meteorological models with distributed hydrological models and reducing uncertainties related to downscaling is one of the major challenges in flood prediction. This study with the aim of predicting floods, demonstrates possibility of coupling the WRF model with the WRF-Hydro model, which is a hydrological-hydraulic, distributional, and physical model. For calibration, the Kashkan watershed is chosen as the study area due to its high flooding potential. According to observational flood hydrograph in study area, two severe flood events in three hydrometric stations were selected for calibration. Based on sensitivity analysis, the parameters of infiltration control, surface retention depth, surface roughness, and channel Manning’s roughness are considered as the most effective parameters. The use of these parameters will make it possible to calibrate the volume and shape of flood hydrograph to achieve accurate results. Afterward, Step by step method is used for determining the optimal values of parameters are identified in the sensitivity analysis. Poldakhtar station, located at the terminus of the basin is chosen for calibration for one event. In the next step, the calibrated model was evaluated based on the optimal parameters set for other stations and events. The evaluation results of the WRF-Hydro with optimized parameters verify the capability of the WRF-Hydro for simulating flood in the steep slope watershed after calibration. Moreover, the main characteristics of hydrograph like volume, timing and peak flow rate are simulated accusatively.

کلیدواژه‌ها [English]

  • Flood Forecast
  • Coupled model
  • Meteorological
  • Hydrological
  • WRF-Hydro
Abott MB, Bathurst JC, Cunge JA, O’Connell PE, and Rasmussen J (1986) An introduction to the European Hydrologic System-Système Hydrologique Européen, SHE, 2: Structure of a physically-based, distributed modeling system. Journal of Hydrology 87(1-2):61–77
Anderson ML, Chen Z-Q, Kavvas ML, and Feldman A (2002) Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering, American Society of Civil Engineers 7(4):312–318
Burnash RJC (1995) The NWS river forecast system-catchment modeling. Computer Models of Watershed Hydrology 311–366
Chen Y, Dong Y, and Zhang PC (2013) Study on the method of flood forecasting of small and medium sized catchment. Proceeding of the 2013 Meeting of the Chinese Society of Hydraulic Engineering, 26–28
Chen Y, Li J, and Xu H (2016) Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrology and Earth System Sciences, Copernicus GmbH 20(1):375
Downer CW and Ogden FL (2004) GSSHA: Model to simulate diverse stream flow producing processes. Journal of Hydrologic Engineering, American Society of Civil Engineers 9(3):161–174
Flesch TK and Reuter GW (2012) WRF model simulation of two Alberta flooding events and the impact of topography. Journal of Hydrometeorology 13(2):695–708
Frasera D, Tange P, and Kama A (2010) Early warning and on-line mapping for flood events. Geoscience and Remote Sensing: New Achievements. BoD–Books on Demand 147
Givati A, Gochis D, Rummler T, and Kunstmann H (2016) Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the mediterranean region. Hydrology 3(2):19
Gochis DJ, Yu W, and Yates DN (2015) The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp.
Gochis J and Chen F (2003) Hydrological enhancements to the community Noah land surface model. University Corporation for Atmospheric Research. doi:10.5065/D60P0X00
Handmer JW, Smith DI, and Lustig TL (1988) The Sydney floods of 1986: Warnings, damages, policy and the future. Hydrology and Water Resources Symposium 1988: Preprints of Papers, Institution of Engineers, Australia, 206
Hogue TS, Sorooshian S, Gupta H, Holz A, and Braatz D (2000) A multistep automatic calibration scheme for river forecasting models. Journal of Hydrometeorology 1(6):524–542
Hong S-Y and Lee J-W (2009) Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmospheric Research 93(4):818–831
Imani S, Farokhnia A, Dehban H, Hasanli SAM, Javadi F, Najafi MS, and Roozbahani R (2019) Assessing the performance of WRF and GFS models in forecasting recent heavy rainfalls in IRAN. Seventh Comprehensive Conference on Flood Engineering and Management (In Persian)
Institue DH (2009) MIKE11 a modeling system for rivers and channels. Reference Manual
Jordan F, Boillat JL, Dubois J, and Schleiss A (2004) MINERVE, a tool for flood prediction and management of the Rhone river catchment area. Risiken bei der Bemessung und Bewirtschaftung von Fließgewässern und Stauanlagen (27):227-236
Kavvas ML, Chen ZQ, Dogrul C, Yoon JY, Ohara N, Liang L, Aksoy H, Anderson ML, Yoshitani J, and Fukami K (2004) Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module. Journal of Hydrologic Engineering, American Society of Civil Engineers 9(6):450–464
Kouwen N (1988) WATFLOOD: A micro-computer based flood forecasting system based on real-time weather radar. Canadian Water Resources Journal, Taylor & Francis 13(1):62–77
Lahmers TM, Gupta H, Castro CL, Gochis DJ, Yates D, Dugger A, Goodrich D, and Hazenberg P (2019) Enhancing the structure of the WRF-hydro hydrologic model for semiarid environments. Journal of Hydrometeorology 20(4):691–714
Liang X, Lettenmaier DP, Wood EF, and Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, Wiley Online Library 99(D7):14415–14428
Liu Y, Liu J, Li C, Yu F, Wang W, and Qiu Q (2020) Parameter sensitivity analysis of the WRF-Hydro modeling system for streamflow simulation: A Case Study In Semi-Humid And Semi-Arid Catchments Of Northern China. Asia-Pacific Journal of Atmospheric Sciences https://doi.org/10.1007/s13143-020-00205-
Madsen H (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources 26(2):205–216
Meyer V, Priest S, and Kuhlicke C (2012) Economic evaluation of structural and non-structural flood risk management measures: Examples from the Mulde River. Natural Hazards 62(2):301–324
Molinari D, Ballio F, and Menoni S (2013) Modelling the benefits of flood emergency management measures in reducing damages: A case study on Sondrio, Italy. Natural Hazards and Earth System Sciences, Citeseer 13(8):1913
Naabil E, Lamptey BL, Arnault J, Kunstmann H, and Olufayo A (2017) Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa. Journal of Hydrology: Regional Studies. Elsevier 12(December 2016):196–209
Norouzi A, Ghavasieh A.R, Attari J (2009)
Peng D, Zhijia L, and Zhiyu L (2008) Numerical algorithm of distributed TOPKAPI model and its application. Water Science and Engineering 1(4):14–21
Porhemat J and Kazemi R (2017) Regional modeling and evaluation of runoff coefficient in Karkhe Basin. Journal of Watershed Management Research 8(15):82–91
Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology 198(1–4):69–97
Ryu Y, Lim Y-J, Ji H-S, Park H-H, Chang E-C, and Kim B-J (2017) Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences 53(4):421–430
Saedi A, Saghafian B, Moazami S (2020) Uncertainty of flood forecasts via ensemble precipitation forecasts of seven NWP models for spring 2019 Golestan flood. Iran-Water Resources Research 16(1):347-359 (In Persian)
Senatore A, Mendicino G, Gochis DJ, Yu W, Yates DN, and Kunstmann H (2015) Fully coupled atmosphere‐hydrology simulations for the central M editerranean: Impact of enhanced hydrological parameterization for short and long time scales. Journal of Advances in Modeling Earth Systems, Wiley Online Library 7(4):1693–1715
Sharifi A, Baharlouie D, and Abasi S (2018) Investigation of the effect of Karkheh Reservoir Dam in flood control from 2003 to 2005 in Khuzestan province. Third National Congress of Civil Engineering, (In Persian)
Sherman LK (1932) Streamflow from rainfall by the unit-graph method. Eng. News Record 108:501–505
Silver M, Karnieli A, Ginat H, Meiri E, and Fredj E (2017) An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions. Environmental Modelling & Software. Elsevier 91:47–69
Thieken AH, Müller M, Kreibich H, and Merz B (2005) Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water Resources Research, Wiley Online Library 41(12)
Tian J, Liu J, Yan D, Ding L and Li C (2019) Ensemble flood forecasting based on a coupled atmospheric-hydrological modeling system with data assimilation. Atmospheric Research 224:127–137
Versini PA, Berenguer M, Corral C, Sempere-Torres D (2014) An operational flood warning system for poorly gauged basins: Demonstration in the Guadalhorce basin (Spain). Natural Hazards 71(3):1355-78
Wang Z-M, Batelaan O, and De Smedt F (1996) A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Physics and Chemistry of the Earth 21(3):189–193
Yilmaz KK, Gupta H V, and Wagener T (2008) A process‐based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research 44(9)
Yucel I, Onen A, Yilmaz KK, and Gochis DJ (2015) Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, Elsevier B.V. 523:49–66
Zhao RJ (1977) Flood forecasting method for humid regions of China. East China College of Hydraulic Engineering, Nanjing, China