طراحی بهینه شبکه پایش کیفی آب زیرزمینی با استفاده از نقشه آسیب‌پذیری آبخوان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 استادیار گروه مهندسی آب دانشگاه گیلان

3 دانشیار گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

بهره‌برداری بدون برنامه‌ریزی و بیش از حد مجاز آب زیرزمینی در نواحی ساحلی خطر پیشروی آب شور را افزایش می‌دهد، بنابراین مدیریت و پایش کیفیت آب در این نواحی از اهمیت بالایی برخوردار است. در این مطالعه، شبکه پایش بهینه با حداقل تعداد چاه‌ها در آبخوان ساحلی تالش با توجه به نقشه آسیب‌پذیری آبخوان و ارزیابی دقت شبکه پایش طراحی شد. در این راستا، نقشه آسیب‌پذیری آبخوان با استفاده از شاخص DRASTIC اصلاح شده تهیه شد و از الگوریتم ژنتیک برای جستجوی بهینه شبکه پایش استفاده شد. در مدل بهینه‌سازی هم‌زمان سه هدف حداکثر کردن همبستگی بین شاخص آسیب‌پذیری و مقدار EC، حداقل کردن تعداد چاه‌های پایش و حداکثر کردن ضریب نش-ساتکلیف که بیانگر برازش بین توزیع EC محاسبه شده در شبکه پایش موجود و شبکه جدید است، مورد بررسی قرار گرفت. با اعمال ضریب وزنی w برای هدف اقتصادی، سه هدف در یک تابع هدف تعریف شد و وزن‌های مختلف w ارزیابی شد. نتایج نشان داد که انتخاب جواب بهینه تا حد زیادی به تعیین ضریب وزنی w بستگی دارد و بهترین وزن با توجه به متعادل‌ترین جواب و با توجه به شاخص آسیب‌پذیری و دقت شبکه پایش انتخاب شد. نتایج اعتبارسنجی نشان داد که در هر دو دوره بهینه‌سازی و اعتبارسنجی تخمین‌های قابل قبولی حاصل شده است. همچنین با توجه به تغییرات کمی و کیفی آب زیرزمینی در درازمدت بهتر است به صورت دوره‌ای شبکه پایش کیفی آب زیرزمینی ارزیابی و دوباره طراحی شود تا در برنامه‌ریزی‌ها و اعمال روش‌هایی برای بهبود کیفیت آب زیرزمینی مؤثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of the Optimal Groundwater Quality Monitoring Network Using the Aquifer Vulnerability Map

نویسندگان [English]

  • Hedi Mahmoudpour 1
  • Somaye Janatrostami 2
  • Afshin Ashrafzadeh 3
1 Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assistant Professor of Water Engineering Department, University of Guilan
3 Associate Professor, Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

Unplanned operation and excessive extraction of groundwater in coastal areas increases the risk of seawater intrusion; so water quality monitoring and management in these areas are of great importance. In this study, an optimal monitoring network with minimum number of wells in Talesh coastal aquifer is designed according to the aquifer vulnerability map and evaluation of the accuracy of monitoring network. In this regard, the aquifer vulnerability map was prepared using the modified DRASTIC index; and genetic algorithm was used to optimize the monitoring network. Three objectives were used in the optimization model including (1) maximizing the correlation between vulnerability index and EC values, (2) minimizing the number of monitoring wells, and (3) maximizing the Nash-Sutcliffe (NS) efficiency. NS, represented the match between the calculated EC distribution obtained from existing monitoring wells and those wells from the newly generated network. Applying the weighting factor w for economic objective, the three above-mentioned objectives are integrated in a single objective function and different weights of w were evaluated. The results showed that the selection of an optimal solution greatly depends on the weighting coefficient w and the best weight was selected according to the vulnerability index and the accuracy of monitoring network. Due to long-term quantitative and qualitative changes in groundwater, it is better to periodically evaluate and redesign groundwater quality monitoring network so that the network could effectively use in planning and applying methods to improve groundwater quality.

کلیدواژه‌ها [English]

  • Coastal Aquifer
  • Modified DRASTIC
  • Optimization
  • Genetic algorithm
Afonso MJ, Pires A, Chamine HI, Marques JM, Guimarães L, Guilhermino L, Rocha FT (2008) Aquifer vulnerability assessment of urban areas using a GIS-based cartography: paranhos groundwater pilot site, Porto, NW Portugal. Global Groundwater Resources and Management, Selected Papers from The 33rd International Geological Congress, Aug. 6-14:259-278
Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeological settings. EPA/600/2-87/035, US EPA, Ada, OK, USA
Ayvaz MT, Elçi A (2018) Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach. Journal of Hydrology 563:1078-109
Ayvaz MT, Kentel E (2015) Identification of the best booster station network for a water distribution system. Journal of Water Resources Planning and Management 141(10):4014-4076
Azizi Mobaser Jsh, Masud Lak M, Rasoulzadeh A (2018) Evaluation of intrinsic vulnerability of Urmia Plain groundwater pollution using original DRASTIC and drastic modified models. Iran-Water Resources Research 14(5):220-235 (In Persian)
Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agricultural Water Management 97(2):240-246
Barca E, Bruno DE, Lay-Ekuakille DE, Maggi S, Passarella S (2018) Retrospective analysis: A validation procedure for the redesign of an environmental monitoring network. Measurement 113:211-219
Bashi Azghadi SN, Kerachian R (2010) Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Science of the Total Environment 408(10):2189-2198
Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model-case study in Goa. Jalvigyan Sameeksha 20:29-45
Chadalavada S, Datta B (2008) Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers. Water Resources Management 22:651-670
Datta B, Chakrabarty D, Dhar A (2009) Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources. Water Resources Management 23(10):2031-2049
Daughney CJ, Raiber M, Moreau Fournier M, Morgenstern U, Van der Raaij R (2012) Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: comparison of New Zealand's national and regional groundwater monitoring programs. Hydrogeology Journal 20:185-200
Dhar A, Datta B (2010) Logic-based design of groundwater monitoring network for redundancy reduction. Journal of Water Resources Planning and Management 136:88–94
Fisher JC (2013) Optimization of water-level monitoring networks in the eastern Snake
River Plain aquifer using a kriging-based genetic algorithm method. U.S. Geological Survey Scientific Investigations Report 2013-5120 (DOE/ID-22224) Reston VA
Guo Y, Wang JF, Yin XL (2011) Optimizing the groundwater monitoring network using MSN theory. Procedia - Social and Behavioral Sciences 21:240–242
Hamza MH, Added A, Rodriguez R, Abdeljaoued S,  Mammou AB (2006) GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-RafRaf aquifer, Northern Tunisia). Journal of Environmental Management 84(1):12-19
Jin X, Ranjithan RS, Mahintakumar G (2014) A monitoring network design procedure for Three Dimensional (3D) groundwater contaminant source identification. Environmental Forensics 15(1):78-96
Kardan Moghaddam H,  Jafari F, Javadi S (2015) Evaluation vulnerability of coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrological Sciences Journal 62(1):137-146
Khader A, McKee M (2014) Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty. Environmental Modelling & Software 57:115-126
Khoshdooz Masooleh N, Babazadeh H, Tabatabaei SH, Naderi M (2013) Modifying DRASTIC model to determine groundwater vulnerability in a coastal region. Journal of Water and Soil Resources Conservation 3(1):19-31 (In Persian)
Kim KH, Lee KK (2007) Optimization of groundwater-monitoring networks for identification of the distribution of a contaminant plume. Stochastic Environmental Research and Risk Assessment 21(6):785-794
Loaiciga HA, Charbeneau RJ, Everett LG, Fogg GE (1992) Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering 118:11-37
Luo Q, Wu J, Yang Y, Qian J, Wu J (2016) Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. Journal of Hydrology 534:352-363
Luyun JrR, Momii K, Nakagawa K (2009) Laboratory-scale saltwater behavior due to subsurface cutoff wall. Journal of Hydrology 377:227-236
McLean MI, Evers L, Bowman AW, Bonte M, Jones WR (2019) Statistical modelling of groundwater contamination monitoring data: A comparison of spatial and spatiotemporal methods. Science of The Total Environment 652:1339-1346
Mogheir Y, Lima JLMP, Singh VP (2009) Entropy and multi-objective based approach for groundwater quality monitoring network assessment and redesign. Water Resources Management 23:1603-1620
Momejian N, Abou-Najm M, Alameddine I, El-Fadel M (2018) Can groundwater vulnerability models assess seawater intrusion?. Environmental Impact Assessment Review 75:13-26
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50(3):885-900
Nowak W, Rubin Y, de Barros PJ (2012) A hypothesis-driven approach to optimize field campaigns. Water Resources Research 48:1-16
Oroji B, Solgi E (2016) Vulnerability assessment of asadabad (Hamadan) plain groundwater by GIS. Environmental Sciences 14(1):91-104
Rosen L (1994) A study of the DRASTIC methodology with emphasis on Swedish conditions. Ground Water 32:278-285
Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association 37(5):1169-1188
Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State Water Survey
Van Liew MW, Arnold JG, Garbrecht JD (2003) Hydrologic simulation on agricultural watersheds: Choosing between models. Trans. ASAE 46:1539-1551
Wu J,  Zheng C, Chien CC (2005) Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of contaminant Hydrology 77(1-2):41-65
Wu Y (2004) Optimal design of a groundwater monitoring network in Daqing, China. Environmental Geology 45:527-535
Yakirevich A, Pachepsky YA, Gish TJ, Guber AK, Kuznetsov MY, Cady RE, Nicholson TJ (2013) Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology 501(25):13-24
Yang F, Cao S, Liu X, Yang K (2008) Design of groundwater level monitoring network with ordinary kriging. Journal of Hydrodynamics 20(3):339–346
Yang XS, Gandomi AH, Talatahari S, Alavi AH (2012) Geotechnical and transport engineering (1st ed.). Metaheuristics in Water, Elsevier, Amsterdam
Zamani Moghadam MG, Moridi A, Yazdi J (2020) Determining the groundwater quality protection zone by considering the vulnerability of aquifer. Iran-Water Resources Research 16(1):1-16 (In Persian)