ارزیابی و شبیه‌سازی ردپای آب محصولات کشاورزی در اقلیم‌های مختلف ایران با لحاظ سناریوهای تغییر اقلیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منایع طبیعی گرگان- دانشکده مهندسی آب و خاک

2 هیأت علمی گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 هیات علمی گروه آب دانشگاه ارومیه

4 موسسه تحقیقات پنبه کشور/سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

 
پدیده تغییر اقلیم یکی از مهمترین چالش­های زیست محیطی است که بر روی منابع پایه از جمله منابع آب تأثیرات بسزایی دارد، لذا ارزیابی این پدیده و پیش‌بینی تأثیر آن بر محیط زیست،  منابع زیست محیطی، کشاورزی و منابع آبی، امری لازم و ضروری است. در این تحقیق، به شبیه‌سازی پارامترهای اقلیمی  با مدل گردش عمومی جوی اقیانوسی GFDL-CM3 تحت دو سناریوی پرکاربردRCP4.5  و RCP8.5 در دو دوره زمانی 2040-2021 و 2060-2041 در شش اقلیم مختلف ایران پرداخته شده و با استفاده از نتایج آن، محاسبات پیش‌بینی ردپای آب محصولات کشاورزی در دو جزء ردپای آب آبی و آب سبز انجام گردید. برای این منظور ابتدا 31 ایستگاه از سطح کل ایران انتخاب و با اقلیم‌بندی یونسکو در شش کلاس اقلیمی طبقه‌بندی گردیدند و سپس داده‌های 30 ساله آماری هواشناسی آنها وارد مدل ریزمقیاس کننده‏ی  LARS-WG گردیده و با تولید 200 سری داده به تولید داده‌های هواشناسی در دوره‌های زمانی مورد نظر پرداخته شد. نتایج نشان داد که در طی دوره‌های آتی دما در بین مناطق مورد مطالعه از 5/0 درجه تا 03/2 درجه افزایش پیدا می‏کند و تغییرات بارندگی نیز از 16- میلیمتر کاهش تا 2/100 میلیمتر افزایش خواهد داشت و این سبب تغییرات ردپای آب سبز و آبی محصولات در اقلیم‌های مختلف ایران به ترتیب از 44/13- درصد تا 53/37 درصد در ردپای آب سبز و 77/18- درصد تـا 20/38 درصد در ردپای آب آبی می­گــردد. در بین اقلیم‌های مـورد بررسی نیز دو اقلیم SA-K-W (نیمه خشک سرد گرم) و PH-C-W (خیلی مرطوب خنک گرم) با بیشترین کاهش ردپای آب سبز و بیشترین افزایش ردپای آب آبی مواجه خواهند شد و بیشتر از سایر اقلیم‌ها تحت تأثیر تغییر اقلیم و عواقب ناشی از آن قرار خواهند گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and simulation of water footprints of agricultural crops in different climates of Iran considering of climate change scenarios

نویسندگان [English]

  • tohid aligholinia 1
  • Khalil Ghorbani 2
  • Hossien Rezaie 3
  • Gorban Gorbani nasr abad 4
1 PhD student of water engineering, Department of water and soil engineering.
2 Faculty member. Water Engineering Department, College of Water & Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources
3 Urmia university
4 Cotton Research Institute of Iran, Agricultural Research Education and Extension Organization ,Gorgan, Iran
چکیده [English]

Climate change is one of the most important environmental challenges that has a significant impact on basic resources, including water resources, so it is necessary to assess this phenomenon, agriculture and water resources. In this study, due to this importance, the simulation of climatic parameters with the general ocean circulation model GFDL-CM3 under two commonly used scenarios RCP4.5 and RCP8.5 in two time periods of 2021-2040 and 2041-2060 in six different climates of Iran has been investigated and Using its results, the prediction calculations of the water footprint of agricultural crops were performed in two components, blue water and green water footprints. For this purpose, 31 stations from all over Iran were selected and classified by UNESCO classification into six climate classes and then their 30-year meteorological statistics data are entered into the LARS-WG model. meteorological data were generated over the desired time periods. The results showed that during future periods the temperature in the study areas will increase from 0.5 ° C to 2.3 ° C and rainfall changes will increase from -16 mm to 100.2 mm. This causes changes in green and blue water footprints in different climates of Iran from -13.44% to 37.53% in green water footprint and -18.77% to 38.20% in blue water footprint, respectively. Among the climates studied, the two climates SA-K-W and PH-C-W will have the largest reduction in green water footprint and the highest increase in blue water footprint, and will be most affected by climate change and its consequences.

کلیدواژه‌ها [English]

  • UNESCO Climate
  • Blue water
  • Green water
  • climate change
  • water footprint
Aaheim A, Amundsen H, Dokken T, Wei T (2012) Impacts and adaptation to climate change in European economies. Global Environmental Change 22:959–968
Amiri E, Khorsand A, Daneshian J, Yousefi M (2018) Predicting biomass and grain yield in canola under different water regimes and fertilizers using AquaCrop model. Irrigation Sciences and Engineering 41(1):57-72
Aligholinia T, Sheibany H, Mohamadi O, Hesam M (2019) Comparison and evaluation of blue, green and gray water footprint of wheat in different climates of Iran. Iran-Water Resources Research 15(3):234-245 (In Persian)
Bates B C, Charles S P, Hughes J P (1998) Stochastic downscaling of numerical climate model simulations. Environmental Modelling and Software 13:325–331
Bayart J B, Bulle C, Deschenes L, Margni M, Pfister S, Vince F, Koehler A (2010) A framework for assessing off-stream freshwater use in LCA. International Journal of Life Cycle Assess 15 (5):439e453
Berger M, Finkbeiner M (2010) Water footprinting: How to address water use in life cycle assessment? Sustainability 2:919e944
Bocchiola D, E Nana, A Soncini (2013) Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agricultural Water Management 116:50-61
Burlando P, Rosso R (2002) Effects of transient climate change on basin hydrology. Precipitation Scenarios for the Arno River Basin, central Italy. Hydrological Processes 16:1151–1175
Chapagain A K B, Hoekstra A Y (2012) The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics 70:749–758
Chico D, Aldaya M, Garrido A (2013) A water footprint assessment of a pair of jeans: the influence of agricultural policies on the sustainability of consumer products. Cleaner Production 57:238–248
Christensen J H, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Magaña Rueda V (2007) Regional climate projections. Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, University Press, Cambridge, Chapter 11:847-940
Darwin R, Tsigas M, Lewandrowski J, Raneses A (1995) World agriculture and climate change: Economic Adaptations. Technical Report Agricultural Economic Report Number 703, United States Department of Agriculture, Economic Research Service, Washington, DC
Ene A S, Teodosiu C, Robu B, Volf I (2013) Water footprint assessment in the winemaking industry: A case study of office paper. Cleaner Production 24:30–35
FAO (1974) FAO-UNESCO Soil Map of the World. Vol.I: Legend. UNESCO, Paris
Deschenes O, Greenstone M (2007) The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. The American Economic Review 97:354-385
De Pauw E (2000) Agroclimatic characteristics of mediterranean countries. Rabat, Morocco. Advanced Course Organized by CIHEAM/IAMZ, CRRA-INRA-Settat and ICARDA
 
Doorenbos J, Kassam A H (1979) Yield response to water. FAO Irrigation and Drainage paper, No. 33, Rome, Italy
Feres J G, Reis E J, Speranza J (2008) Assessing the impact of climate change on the brazilian agricultural sector.  In: 46th congress, July 20–23, 2008, Rio Branco, Acre, Brazil, Sociedade Brasileira de Economia, Administracao e Sociologia Rural (SOBER)
Ghaffari A, Ghasemi V, De Pauw E (2015) Agro-climatically zoning of Iran by UNESCO approach. Iranian Dryland Agronomy Journal 4(1):63-74 (In Persian)
Gosling S N (2013) The likelihood and potential impact of future change in the largescale climate-earth system on ecosystem services. Environmental Science and Policy 27(1):S15–S31
Groppelli B, Bocchiola D, Rosso R (2011a) Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy. Water Resources Research 47:W03519
Herath I, Green S, Horne D, Singh R, Clothier B (2014) Quantifying and reducing the water footprint of rain-fed potato production, part I: Measuring the net use of blue and green water. Cleaner Production 81:111-119
Hoekstra A Y (2003) Virtual water trade. In: Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands. Value of Water Research Report Series, vol. 12, UNESCO-IHE, Delft, The Netherlands
Hoekstra A Y, Chapagain A K (2007) Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management 21:35–48
Holst, Rainer, Xiaohua Yu, and Carola Grün (2013) Climate change, risk and grain yields in China. Journal of Integrative Agriculture 12.7:1279-1291
Irmak S, Haman DZ, Jones JW (2002) Valuation of class pans coefficients for estimating reference evapotranspiration in Humid location. Journal of Irrigation & Drainage Engineering, ASCE, 128(3):153-159
IPCC (2001) Climate change 2001: The scientific basis. Cambridge University Press, Cambridge, pp. 785
ISO 14046 (2013) Environmental management-water footprint-principles, requirements and guidelines. International Organization for Standardization, Geneva, Switzerland
Jefferies D, Munoz I, Hoedges J, King V J, Aldaya M M, Ercin A E, Mila I, Canals L L and Hoekstra A Y (2012) Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. Cleaner Production 12:155-166
Khan M S, Coulibaly P, Dibike Y (2006) Uncertainty analysis of statistical downscaling methods. Journal of Hydrology 319(1-4):357-382
Karimi M, Kaki S, Rafati S (2018) Iran's future climate conditions and hazard in climate research. Journal of Spatial Analysis Environmental hazarts 5(3):1-22 (In Persian)
Komuscu A U, Erkan A, Oz S (1998) Possible impacts of climate change on soil moisture availability in the southeast Anatolia development project region: An analysis from an agricultural drought perspective. Climate Change 40:519-545
Lippert C, Krimly T, Aurbacher J (2009) A Ricardian analysis of the impact of climate change on agriculture in Germany. Climatic Change 97:593-610
Mazzi A, Manzardo A, Scipioni A (2014) Water footprint to support environmental management: An overview. In: Salomone R, Saije G (Eds.), Pathways to Environmental Sustainability: Methodologies and Experiences, Springer International Publishing AG, Cham Dordrecht, The Netherlands, ISBN 978-3-319-03825-4
Mendelsohn R (2009) The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research 1:5-19
Mendelsohn R, Dinar A (2003) Climate, water, and agriculture. Land Economics 79:328-341
Morillo J G, Díaz J A, Camacho E, Montesinos P (2015) Linking water footprint accounting with irrigation management in high value crops. Journal of Cleaner Production 87:594-602
Müller C, Cramer W, Hare WL, Lotze-Campen H (2011) Climate change risks for African agriculture. Nature Climate Change 108:4313-4315
Nairizi S, Rydzewski J R (1977) Effects of dated soil moisture stress on crop yields. Experimental Agriculture 13:51-59
Nana E, Corbari C, Bocchiola D (2014) A model for crop yield and water footprint assessment: Study of maize in the Po valley. Agricultural Systems 127:139-149
Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E (2007) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Osman Y, Al-Ansari N, Abdellatif M, Aljawad S B, Knutsson S (2014) Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering 6(13):948-959
Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43-51
Qian B, Hayhoe H, Gameda S (2005) Evaluation of the stochastic weather generators LARS-WG and AAFC-WG for climate change impact studies. Climate Research 29(1):3-21
Raes D, Steduto P, Hsiao T C, Fereres E (2009) Reference manual AquaCrop. FAO, Land and Water Division, Rome, Italy
Rahimikhoob A (2009) An evaluation of common pan coefficient equations to estimate reference evapotranspiration in a subtropical climate (North of Iran). Journal of Irrigation Science 27:289-296
Rasuli A, Rezaei-Banafsheh M, Massah A R, Khorshiddoust A M, Ghermezcheshmeh B (2014) Investigation impact of Morpho-climatic parameters on aaccuracy of LARS-WG model. Irainian Journal of Watershed Management Science 8(24) (In Persian)
Risbey J S (2008) The new climate discourse: Alarmist or alarming? Global Environmental Change 18:26-37
Rodriguez C I, de Galarreta V R, Kruse E E (2015) Analysis of water footprint of potato production in the Pampean region of Argentina. Cleaner Production 81:182-190
Rosenzweig C, Hillel D (1998) Climate change and the global harvest: Potential impacts of the greenhouse effect on agriculture. Oxford University Press, USA, 324 pp.
Shortle J, Abler D, Blumsack S, Crane R, Kaufman Z, McDill M, Najjar R, Ready R, Wagener T, Wardrop D (2009) Pennsylvania climate impact assessment. Report to the Department of Environmental Protection, Environment and Natural Resources Institute, The Pennsylvania State University, USA
Silva C S D, Weatherhead E K, Knox J W, Rodriguez-Diaz J A (2007) Predicting the impacts of climate change- A case study of paddy irrigation water requirements in Sri Lanka. Agricultural Water Management 93:19-29
Tao F, Yokozawa M, Hayashi Y, Lin E (2003) Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture, Ecosystems & Environment 95:203-215
Thomas C, Cameron A, Green R, Bakkenes M, Beaumont L, Collingham Y, Erasmus B, Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld A, Midgley G, Miles L, Ortega-Huerta M, Peterson A, Phillips O, Williams S (2004) Extinction risk from climate change. Nature 427:145-148
UNESCO (1979) Map of the world distribution of arid regions. Map at scale 1:25,000,000 with explanatory note. United Nations Educational, Scientific and Cultural Organization, Paris, 54 pp. ISBN 92-3-101484-6
Zare Abyaneh H, Bayat varkeshi M, Sabzi Parvar AK, Maroufi S, Ghasemi A (2010) Estimation of estimation methods of evapotranspiration of the reference plant and its zoning in Iran. Natural Geographic Research 74:110-95 (In Persian)