تحلیل عدم قطعیت شبیه‌سازی منحنی‌های شدت مدت فراوانی در سناریوهای تغییر اقلیم با استفاده از مدل‌ مولد آب و هوا (مطالعه موردی: تهران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد منابع آب/دانشگاه بین‌المللی خمینی، قزوین، ایران.

2 استاد /گروه علوم و مهندسی آب دانشگاه بین‌المللی خمینی ، قزوین، ایران

چکیده

این پژوهش به ارزیابی تغییرات منحنی‌های شدت- مدت- فراوانی1 در آینده با مدل منطقه‌ای PRECIS پرداخته و برای تعیین عدم قطعیت پیش بینی از مدل K-NN WG استفاده می‌نماید. از سناریوی تغییر اقلیم تاریخی که از تصویر شرایط کنونی در آینده بدست آمد برای تولید حد پایین و از سناریوی انتشار B2 به عنوان سناریوی مرطوب برای تولید حد بالای باند اعتماد پیش بینی استفاده گردید. در مدل WG از دو مکانیزم برزدن2 و ایجاد آشفتگی3 برای تولید داده‌های تصادفی استفاده گردید. مطالعه موردی در بر روی ایستگاه مهرآباد تهران برای دوره تاریخی 1999 – 1959، دوره پیش بینی 2100-2070، برای زمان تداوم رگبار تا 3 ساعت و دوره‌‌های بازگشت2،‌ 5، 10، 20، 50 و 100 ساله صورت گرفت. مقایسه دو سناریوی تغییر اقلیم و شرایط پایه منحنی‌های شدت مدت فراوانی نشان دهنده‌ی افزایش مقادیر و همچنین شدت بارش‌های حدی بود به طوری که بیشینه بارش برای تداوم 10 دقیقه تا 3 ساعت در آینده تحت سناریوهای تاریخی و مرطوب به ترتیب 26 و 31 درصد نسبت به زمان فعلی افزایش یافت. مقایسه بین سناریوی مرطوب و تاریخی به طور میانگین نشان دهنده‌ی 8/4 درصد اختلاف بین این دو سناریو بود. اختلاف کم میان مقادیر حاصل از سناریوی تاریخی به عنوان حد پایین تغییرات و سناریوی مرطوب به عنوان حد بالای تغییرات رگبارهای حدی در آینده، اولاً نشان‌دهنده دقت مناسب مدل PRECIS در شبیه‌سازی بارش برای منطقه مطالعاتی بوده و ثانیاً نشان دهنده افزایش محتمل شدت رگبارهای طراحی مورد استفاده برای مقاصد مدیریت سیلاب شهری می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Uncertainty Analysis of IDF Curves Simulation under Climate Change Scenarios Using a Weather Generator Model (Case Study: Tehran)

نویسندگان [English]

  • Roya Habibnejad 1
  • Alireza Shokoohi 2
1 M.Sc. Graduated Student, Water Engineering Department, Khomeini International University, Qazvin, Iran.
2 Professor, Water Engineering Department Khomeini International University, Qazvin, Iran.
چکیده [English]

The main objective of this research is evaluating IDF curves variation in the future using the observed rainfall and the forecasted one by PRECIS, while focused on yielding the uncertainties of the forecast via employing the K-NN WG model under two historical and wet scenarios. The historical climate change scenario and the B2 emission scenario were used to generate the lower and upper-reliability bounds of the forecast, respectively. By applying the shuffling and perturbation mechanisms, those random data, which are not recorded in the observing period but will be probably happened in the future, were generated and the results were employed for developing the IDF curves of 2, 5, 10, 20, 50, and 100-year return periods. Comparing the two climate change scenarios and the base period IDFs reveal the increase in the intensity of the extreme short-duration rainfalls. Moreover, it was found that the maximum amount of rainfall for the duration of 10 minutes to 3 hours on average would have a difference of 26 to 31 percent under the historical and wet scenarios concerning the base period, respectively. This difference between the historical and wet scenario is limited to 4.8%. The small difference between the historical scenario, as the lower bound, and the wet one, as the upper bound of the probable storms in the future, firstly shows the accuracy of PRECIS in simulating rainfall in the study region; secondly, it shows the certain increase in the intensity of the design storms which matter in urban flood management.

کلیدواژه‌ها [English]

  • Climate change
  • Uncertainty
  • IDF curves forecast
  • WG model
  • PRECIS
AghaKouchack A, Ragno E, Moftakhari H (2018) Projected change in California’s precipitation intensity-duration-frequency curves. California’s Fourth Climate Change Assessment, California Energy Commission
Al Mamoon A, Joergensen NE, Rahman A, Qasem H (2016) Design rainfall in Qatar: sensitivity to climate change scenarios. Natural Hazards 81(3):1797–1810
Alam MS, Elshorbagy A (2015) Quantification of the climate change-induced variations in Intensity-Duration-Frequency curves in the Canadian Prairies. Journal of Hydrology 527:990-1005
Arnbjerg-Nielsen K (2012) Quantification of climate change effects on extreme precipitation used for high-resolution hydrologic design. Urban Water Journal 9(2):57-65
Binesh N, Niksokhan MH, Sarang A (2018) Analysis of climate change impact on extreme rainfall events in the west flood diversion catchment of Tehran. Journal of Watershed Management Research 17(9):226-234 (In Persian)
De Paola F, Giugni M, Topa ME, Bucchignani E (2014) Intensity-duration-frequency (IDF) rainfall curves, for data series and climate projection in African cities. Journal of Springer Plus 3(133):1-18
Denault C, Millar RG, Lence BJ (2002) Climate change and drainage infrastructure capacity in an urban catchment. In: Proc. Annual Conference of the Canadian Society for Civil Engineering, 5-6
Fadhel sh, Rico-Ramirez MA, Han D (2017) Uncertainty of intensity-duration-frequency (IDF) curves due to varied climate change baseline periods. Journal of Hydrology 547:600-612
Habibnejad R, Shokoohi A (2020) Evaluating intensity, duration, and frequency of short duration rainfalls using a regional climate change model (Case study: Tehran). Journal of Iran-Water Resources Research 15(4):412-424 (In Persian)
Hung YF, Mirzaei M, Zaki Mat Amin M (2016) Uncertification in rainfall intensity duration frequency curves based on historical extreme precipitation quantiles.  Procedia Engineering 154:426-432
IPCC Climate change (2013) The physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chap. 12. Cambridge University Press, Cambridge, 237 pages
Jahangir MH, Norozi E, Yarahmadi Y (2017) Investigation of climate parameters’ changes in Borujerd city in the next 20 years through the using HADCM3 model. ECO Hydrology 5(4):1345-1353 (In Persian)
King ML, Mcleod AI, Simonpvic SP (2015) Improved weather generator algorithm for multisite simulation of precipitation and temperature. Journal of the American Water Resources Association 51(5):1305:1320
Kaboli H (2019) Uncertainty of extreme rainfall intensity and frequency under future climate change impact: Khorasan-Razavi province. Iran-Water Resources Research 12(2):93-103 (In Persian)
Littell JS, Mauger GS, Salathe EP, Hamlet AF, Lee SY, Matt RS, Marketa E, Robert N, Eric RL, Nathan JM (2014) Uncertainty and extreme events in future climate and hydrologic projections for the Pacific Northwest: providing a basis for vulnerability and core/corridor assessments. Climate Impacts Group
Mailhot A, Duchesne S (2010) Design criteria of urban drainage infrastructures under climate change. Journal of Water Resources Planning Manage 136(2):201-208
Mirhosseini GB, Srivastava P, Stefaanova L (2013) The impact of climate change on rainfall Intensity-Duration-Frequency (IDF) curves in Alabama.  Regional Environmental Change 13:25-33
Palmer RN, Clancy E, VanRheenen NT, Wiley MW (2004) The impacts of climate change on the tualatin river basin water supply: An investigation into projected hydrologic and management impacts. Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
Peck A, Prodanovic P, Simonovic S (2012) Rainfall intensity duration frequency curves under climate change: The city of London, Ontario, Canada. Canadian Water Resources Journal 37(3):177-189
Prodanovic P, Simonovic S (2008) Intensity duration frequency analysis under changing climatic conditions. In Proceedings of the 4th International Symposium on Flood Defense: Managing Flood Risk, Reliability and Vulnerability. Toronto, Ontario, Canada, May 68, 2008, 8 pp
Prodanovic P, Simonovic S (2006) Assessment of water resources risk and vulnerability to changing climatic conditions: Inverse flood risk modeling of the Upper Thames River basin. Report No. VIII, Department of Civil and Environmental Engineering, the University of Western Ontario, London, Ontario, Canada
Rodríguez R, Navarro X, Casas MC, Ribalaygua J, Russo B, Pouget L, Redaño A (2014) Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). International Journal of Climatology 34(3):643-654
Sarr MA, Seidou O, Tramblay Y, El Adlouni S (2015) Comparison of downscaling methods for mean and extreme precipitation in Senegal. Journal of Hydrology 4:369-385
Arfa S, Nasseri M (2019) Assessment of Single-site versus Multi-site Downscaling Methods on Estimation of Rainfall Extreme Values. Journal of the Earth and Space Physics 45(3):575-597
Sharif M, Burn DH (2007) Improved k-nearest neighbor weather generating model. ASCE Journal of Hydrologic Engineering 12(1):42-51
Southam CF, Mills BN, Moulton RJ, Brown DW (1999) The potential impact of climate change in Ontario's Grand River Basin: Water supply and demand issues. Canadian Water Resources Journal 24(4):307-330
Sunyer MA, Hundecha Y, Lawrence D, Madsen H, Willems P, Martinkova M, Vormoor K, Bürger G, Hanel M, Kriauci unien J, Loukas A, Osuch M,  Yücel I (2015) Inter-comparison of statistical downscaling methods for the projection of extreme precipitation in Europe. Hydrologic Earth System Science 19:1827-1847
Sunyer MA, Madsen H, Rosbjerg D, Arnbjerg-Nielsen K (2014) A Bayesian approach for uncertainty quantification of extreme precipitation projections including climate model interdependency and nonstationary bias. Journal of Climatology 27(18):7113-7132
Shrestha A, Babel MS, Weesakul S, Vojinovic Z (2017) Developing Intensity-Duration-Frequency (IDF) curves under climate change uncertainty: The case of Bangkok, Thailand. Water 9(2):145; https://doi.org/10.3390/w9020145
Thanh NT, Remo LDA (2018) Projected changes of precipitation IDF curves for a short duration under climate change in Central Vietnam. Journal of Hydrology 5(33):2-16
Tung YK, Yen BC (2005) Hydrosystems engineering uncertainty analysis. McGraw-Hill, USA, 306p.
Van Der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter
Waters D, Watt WE, Marsalek J, Anderson BC (2003) Adaptation of a storm drainage system to accommodate increased rainfall resulting from climate change. Journal of Environmental Planning Manage 46(5):755-770
Watt E, Marsalek J (2013) A critical review of the evolution of the design storm event concept. Canadian Journal of Civil Engineering 40(2):105-113
Watt WE, Waters D, McLean R (2003) Climate variability and urban stormwater infrastructure in Canada: Context and case studies. Toronto-Niagara Region Study Report and Working Paper Series, Report 2003-1. Meteorological Service of Canada, Waterloo, Ontario
Willems P (2013) Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. Journal of Hydrology 496:166-177
Yates D (2003) A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resources Research 39(7):1-15