جانمایی بهینه حسگرهای کنترل کیفیت آب در شبکه توزیع بر مبنای تغییرات دینامیک پارامترهای کیفی متداول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی و مدیریت منابع آب/ دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران.

2 استادیار/ گروه آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران.

چکیده

تشخیص آلودگی‌ها در شبکه توزیع آب برای حفاظت از سلامت مصرف کنندگان ضروری است. شاخص‌های معمول کیفیت آب (کلر، pH ...) در واکنش به آلاینده‌ها، با تغییراتی مواجه می‎گردند که این تغییرات پویا می‌توانند تشخیص آلودگی در شبکه آب را تسهیل نمایند. در این پژوهش، پاسخ پارامترهای معمول کیفیت به رویداد آلودگی تزریق پتاسیم سیانید به شبکه توزیع آب مثال شماره سه EPANET 2.0 مطالعه و از مدل EPANET-MSX برای مشاهده تغییرات کلر در پاسخ به ورود آلاینده استفاده می‎گردد. جانمائی بهینه حسگرها در شبکه توزیع آب با استفاده از ارتباط میان شبیه‎ساز EPANET-MSX و الگوریتم بهینه‎سازی ازدحام ذرات در ساختار یک و دو هدفه انجام می‎گردد. اهداف مدلسازی در این تحقیق کاهش زمان تشخیص، افزایش درست نمایی تشخیص و کاهش حجم آب آلوده مصرفی، می-باشند که به صورت اهداف تک یا در قالب دو هدفه لحاظ گردیده‎اند. مطالعه نقش تعداد حسگرها از یک تا پنج حسگر در اهداف کاهش زمان تشخیص آلودگی، افزایش درست‎نمایی تشخیص و کاهش مصرف آب آلوده به ترتیب سبب کاهش زمان تشخیص از 22/36 به 41/17 ساعت، افزایش درست نمائی تشخیص از 8/28 به 6/68 درصد و کاهش مصرف حجم آب آلوده از 87/31 به 78/3 مترمکعب گردیده است. بررسی مسائل دو هدفه تعیین جانمائی بهینه حسگر در شبکه، بیانگر رابطه مستقیم 1-درست نمائی و زمان تشخیص آلودگی، 2-درست نمائی تشخیص و حجم مصرفی آب آلوده و 3- زمان تشخیص و حجمی مصرفی آب آلوده است. همچنین نتایج نشان دادند موقعیت گرههایی با تقاضای بالا و نحوه رخدادهای آلودگی شبکه بر جانمائی حسگرها اثرگذار هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensors Placement in Water Distribution Network Under Dynamic Variations of Common Water Quality Parameters

نویسندگان [English]

  • Alireza Shahmirnoori 1
  • Motahareh Saadatpour 2
1 M.Sc. Graduate of Water Resources Engineering, School of Civil Engineering, Iran University of Science and Technology.
2 Assistant Professor, School of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Detection of pollution in any water distribution network (WDN) is essential to maintain public health. Recent researches have demonstrated common water quality indicators (free Chlorine, pH, Electrical‎ Conductivity, …) response to contaminants, which can facilitate the pollutant detection in WDNs. In this research, EPANET-MSX model is used to simulate the realistic responses of common water quality parameters to a pollutant event in WDN, represented in example 3 of EPANET 2.0. The aim of the study is to apply EPANET-MSX to trace Chlorine changes in response to the potassium cyanide injection order to optimize sensor placements WDN. Optimal sensor placement is derived based on coupled EPANET-MSX _ PSO (particle swarm optimization) framework. PSO is implemented as single and multi-objective algorithm. The objectives of the study are to reduce the pollutant detection time, increase detection likelihood, and reduce the contaminated water consumption as single and/or multi-objective problems. Studies on the sensor numbers, ranging from one to five, indicate 1- the pollutant detection time has decreased from 36.22 to 17.41 hours, 2- the pollutant detection likelihood has increased from 28.8% to 68.6%, and 3- the contaminated water consumption has decreased from 31.87 to 3.78 m3. The results show direct relationship between 1- pollutant detection likelihood and detection time, 2- pollutant detection likelihood and contaminated water consumptions, and 3- pollutant detection time and contaminated water consumption in multi-objective problems. Also, the location of the high-demand nodes in WDN and the contamination events occurrence can affect the location of the sensors.

کلیدواژه‌ها [English]

  • EPANET-MSX
  • Sensors
  • Single and/or multi-objective particle swarm optimization algorithm
  • Water distribution network contamination
Ahuja S (2013) monitoring water quality, pollution assessment, and remediation to assure sustainability. 1st Edittion, Elsevier B.V.
Austin RG, Choi CY, Preis A, Ostfeld A, Lansey K (2009) Multi-objective sensor placements with improved water quality models in a network with multiple junctions. World Environmental and Water Resources Congress, 17-21 May, Kansas City, Missouri, USA
Berry JW, Fleischer L, Hart WE, Phillips CA, Watson J-P (2005) Sensor placement in municipal water networks. Journal of Water Resources Planning and Management 131(3):237–243
Comboul M, Ghanem R (2013) Value of information in the design of resilient water distribution sensor networks. Journal of Water Resources Planning and Management 139(4):449–455
Ehsani N, Afshar A (2010) Optimization of contaminant sensor placement in water distribution networks: multi-objective approach. 12th Annual Conference on Water Distribution Systems Analysis (WDSA), September 12-15, Tucson, Arizona, USA
Eliades DG, Kyriakou M, Polycarpou MM (2014) Sensor placement in water distribution systems using the S-PLACE Toolkit. Procedia Engineering 70:602–611
Fisher I, Kastl G, Sathasivan A (2011) Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Research 45(16):4896–4908
Gong W, Suresh MA, Smith L, Ostfeld A, Stoleru R, Rasekh A, Banks MK (2016) Mobile sensor networks for optimal leak and backflow detection and localization in municipal water networks. Environmental Modelling & Software 80:306–321
Helbling DE, VanBriesen JM (2009) Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems. Journal of Environmental Engineering 135(10):918–927
ISIRI (1053) Drinking water- Physical and chemical specifications. 5th revision, Institute of Standards and Industrial Research of Iran (In Persian)‎
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. October 12-15, Orland, Florida, USA
Kumar A, Kansal ML, Arora G (1997) Identification of monitoring stations in water distribution system. Journal of Environmental Engineering 123(8):746–752
Lee BH, Deininger RA (1992) Optimal locations of monitoring stations in water distribution system. Journal of Environmental Engineering 118(1):4–16
Murray R, Haxton T, Janke R, Hart WE, Berry J, Phillips C (2010) Sensor network design for drinking water contamination warning systems: A compendium of research results and case studies using the TEVA-SPOT software. National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
Ostfeld A, Salomons E (2004) Optimal layout of early warning detection stations for water distribution systems security. Journal of Water Resources Planning and Management 130(5):377–385
Ostfeld A, Salomons E (2005) Optimal early warning monitoring system layout for water networks security: inclusion of sensors sensitivities and response delays. Civil Engineering and Environmental Systems 22(3):151-169, DOI: 10.1080/10286600500308144
Preis A, Ostfeld A (2006) Multiobjective sensor design for water distribution systems security. 8th Annual Conference on Water Distribution Systems Analysis (WDSA), August 12-15, Cincinnati, Ohio, USA
Rathi S, Gupta R (2014) Sensor placement methods for contamination detection in water distribution networks: A review. Procedia Engineering 89:181–188
Rathi S, Gupta R (2016) A simple sensor placement approach for regular monitoring and contamination detection in water distribution networks. KSCE Journal of Civil Engineering 20(2):597–608
Sankary N, Ostfeld A (2018) Multiobjective optimization of inline mobile and fixed wireless sensor networks under conditions of demand uncertainty. Journal of Water Resources Planning and Management 144(8), https://doi.org/10.1061/(ASCE)WR.1943-5452.0000930
Schwartz R, Lahav O, and Ostfeld A (2014a) Integrated hydraulic and organophosphate pesticide injection simulations for enhancing event detection in water distribution systems. Water Research 63:271-284
Schwartz R, Lahav O, Ostfeld A (2014b) Optimal sensor placement in water distribution systems for injection of chlorpyrifos. World Environmental and Water Resources Congress, June 1-5, Portland, Oregon, USA
Shen H (2011) Optimal sensor location algorithm and contaminant source identification procedure in water distribution systems. Ph.D. Thesis, University of Guelph
WHO (2017) Guidelines for drinking-water quality: Fourth edition incorporating first addendum. World Health Organization 1–541, Available at: http://www.who.int/iris/handle/10665/254637
Woo H-M, Yoon J-H, Choi D-Y (2001) Optimal monitoring sites based on water quality and quantity in water distribution systems. World Environmental and Water Resources Congress, May 20-24, Orlando, Florida, USA
Wu R (2014) Development of a mobile sensor for potable water quality monitoring. Ph.D. Thesis, Purdue University
Yang X, Boccelli DL (2016) Dynamic water-quality simulation for contaminant intrusion events in distribution systems. Journal of Water Resources Planning and Management 142(10):4016038
Zanjani S (2015) Investigation of widespread contamination of urban water distribution networks. M.Sc. Thesis, School of Civil Engineering, University of Tehran (In Persian) ‎