تاثیر شرایط اقلیمی و توپوگرافیکی سطح زمین بر عملکرد محصولات بارشی خانواده PERSIANN در سطح ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هئیت علمی گروه مهندسی آب /دانشگاه بین‌المللی امام خمینی (ره)، قزوین

2 دانشجوی کارشناسی ارشد/ مهندسی منابع آب، دانشگاه بین المللی امام خمینی (ره)، قزوین

چکیده

پژوهش حاضر با هدف ارزیابی کارائی محصولات بارشی خانواده PERSIANN در مقیاس ماهانه (در بازه زمانی 2000 تا 2019) و با استفاده از 355 ایستگاه سینوپتیک واقع در سطح کشور ایران به انجام رسیده است. همچنین بررسی عملکرد منابع بارشی مذکور در اقلیم‌ها و شرایط توپوگرافیکی مختلف ایران از دیگر اهداف این تحقیق می‌باشد. نتایج حاکی از آن است که منبع PERSIANN-CDR به علت استفاده از داده‌های جهانی GPCP جهت حذف اریب از داده‌ها از همبستگی بسیار زیادی با داده‌های مشاهداتی برخوردار می‌باشد و این در حالیست که متوسط شاخص CC در سطح کشور برای دو منبع PERSIANN و PERSIANN-CCs به ترتیب در حدود 49/0 و 51/0 است. تمامی منابع مذکور در مناطق شمال و شمال غربی کشور مقدار بارش را کم‎ برآورد می‌نمایند و این در حالیست که با حرکت به سمت جنوب و جنوب شرق کشور، مقدار بیش ‎برآوردی بارش با نرخ بیشتری افزایش صورت می‌گیرد. بررسی تاثیر ارتفاع بر عملکرد محصولات بارشی خانواده PERSIANN نیز نشان داد که در مناطق مرتفع (مناطق با ارتفاع 600 تا 2600 متر) و کم ارتفاع (کمتر از 600 متر)، بارش ماهواره‌ای و داده‌های زمینی به ترتیب از همبستگی بالا و پائینی برخوردار هستند. از نظر اقلیمی هم نتایج نشان داد که در اقلیم‌های مدیترانه‌ای، نیمه مرطوب و مرطوب عملکرد منابع بارشی مذکور در تخمین بارش نسبت به اقلیم‌های دیگر به مراتب بهتر می‌باشد. همچنین در اقلیم‌های خیلی مرطوب نوع A و B و خیلی خشک میزان خطا در برآورد بارش بالا بوده و میزان شاخص CC نیز پائین می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Climate and Topographic Conditions on the Performance of PERSIANN Family Products over Iran

نویسندگان [English]

  • Asghar Azizian 1
  • Setareh Amini 2
1 Assistant Professor, Water engineering Dept., Imam Khomeini International University, Qazvin, Iran
2 MSc in Water Resources Engineering, Water engineering Dept., Imam Khomeini International University, Qazvin, Iran
چکیده [English]

One of the complicated variables in hydrological and meteorological processes is precipitation. During the past decades several attempts have been carried out to developed and provide precipitation products with different spatio-temporal resolutions. The PERSIANN family products which includes PERSIANN, PERSIANN-CCs and PERSIANN-CDR is one of the most important attempts to estimate rainfall based on remote sensing techniques and cloud thickness. This research assessed the efficiency and performance of PERSIANN family products at the monthly time scale over Iran using 355 synoptic stations. In addition, evaluating the effect of climate and topographic conditions on the performance of these products is another objectives of this study. Results indicated that PERSIANN-CDR, due to using GPCP dataset for removing bias, highly correlated with observed data, while the average correlation coefficient (CC) over Iran for PERSIANN and PERSIANN-CCs is 0.49 and 0.51, respectively. Moreover, all PERSIANN products tend to underestimate rainfall in north and north-west parts of Iran, while in the south and south-east parts of the country the rate of rainfall overestimation increases significantly. Findings on the effect of topographic conditions demonstrate that in the high elevation (between 600m and 2600m) and low elevation (lower than 600m) regions the correlation between ground-gauge observations and PERSIANN family products is high and low, respectively. The performance of these datasets in the Mediterranean, semi-humid and humid climate regions is better than other climate conditions. Also, in per-humid A, per-humid B and extra arid climate regions the relative bias (RB) in rainfall estimation is very high.

کلیدواژه‌ها [English]

  • Rainfall estimation
  • Remote-Sensing
  • Neural Network
  • PERSIANN family
Adler RF and Negri AJ (1988) A satellite infrared technique to estimate tropical convective and strati form rainfall. Journal of Applied Meteorology and Climatology 27:30–51
Alijanian M, Rakhshandehroo GR, Mishra AK, and Dehghani M (2017) Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology 37(14):4896–4914
Ashouri H, Hsu K, Sorooshian S, Braithwaite D, Knapp KR, Cecil LD, Nelson BR, and Prat OP (2015) PERSIANNCDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society 96:69–83
Azizian A and Etedali HR (2018) Assessing the accuracy of European Center for Medium Range Weather Forecasts (ECMWF). Reanalysis Datasets for Estimation of Daily and Monthly Precipitation 791-777 (In Persian)
Ebert EE, Janowiak JE, and Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. American Meteorological Society 88:47-64
Ghajarnia N, Liaghat A, and Daneshkar Arasteh P (2015) Comparison and evaluation of high resolution precipitation estimation products in Urmia Basin-Iran. Atmospheric Research, Elsevier B.V. 158–159:50–65
Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137:553–597
Hsu KL, Gao X, Sorooshian S, and Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology 36:1176–1190
Hosseini-Moghari SM, Araghinejad S, and Ebrahimi K (2018) Spatio-temporal evaluation of global gridded precipitation datasets across Iran. Hydrological Sciences Journal, Taylor & Francis 63(11):1669–1688
Huffman GJ and Bolvin DT (2013) TRMM and other data precipitation data set documentation. NASA. Greenbelt USA 28
Jamli JB (2015) Validation of satellite-based PERSIANN rainfall estimates using surface-based APHRODITE data over Iran. Earth science 4:150–160
Javanmard S, Yatagai A, Nodzu M, BodaghJamali J, and Kawamoto H (2010) Comparing high resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences 25:119-125
Joyce RJ, Janowiak JE, Arkin PA, and Xie P (2004) CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5(2):487-503
Katiraie-Boroujerdy PS, Nasrollahi N, Hsu K, and Sorooshian S (2013) Evaluation of satellite-based precipitation estimation over Iran. Journal of Arid Environments, Elsevier Ltd 97(March 2018):205–219
Mayor YG, Tereshchenko I, Fonseca-Hernández M, Pantoja DA, and Montes JM (2017) Evaluation of error in IMERG precipitation estimates under different topographic conditions and temporal scales over Mexico. Remote Sensing 9
Mei Y, Nikolopoulos EI, Anagnostou EN, Zoccatelli D, and Borga M (2016) Error analysis of satellite precipitation- driven modeling of flood events in complex alpine terrain. Remote Sensing 8
Nguyen P, Ombadi M, Sorooshian S, Hsu K, AghaKouchak A, Braithwaite D, Ashouri H, and Rose Thorstensen A (2018) The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrology and Earth System Sciences 22(11):5801–5816
Rahimi J, Ebrahimpour M, and Khalili A (2013) Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology. 112(3-4):409-418
Sorooshian S, Hsu LK, Gao X (2000) Evaluation of PERSIANN System Satellite Based Estimaties of Tropical Rainfall.  Bulletin of the American Meteorological Society 8(2):2035-2045
Shayeghi A, Azizian A, and Brocca L (2019) The reliability of reanalysis and remotely sensed precipitation products for hydrological simulation over the SRB, Iran. Hydrological Sciences Journal 40(20):100-120
Tang G, Behrangi A, Long D, Li C, and Hong Y (2018) Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. Journal of Hydrology 559:294–306
Tang G, Ma Y, Long D, Zhong L, and Hong Y (2016) Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology 533:152–167
Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, and Kitoh A (2012) APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of American Meteorological Society 93(9):1401-1415